An Integrated Approach using Automatic Seed Generation and Hybrid Classification for the Detection of Red Lesions in Digital Fundus Images

被引:4
|
作者
Pradhan, Sandip [1 ]
Balasubramanian, S. [1 ]
Chandrasekaran, V. [1 ]
机构
[1] Sri Sathya Sai Univ, Dept Math & Comp Sci, Anantapur, Andhra Pradesh, India
关键词
D O I
10.1109/CIT.2008.Workshops.35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose a novel method for automatic detection of Microaneurysms (MA) and Hemorrhages (HG) grouped as red lesions. Candidate extraction is achieved by Automatic Seed Generation (ASG) which is devoid of Morphological Top Hat Transform (MTH). For classification we tested on Linear Discriminant Classifier (LMSE), UN, GMM, SVM and proposed a Hybrid classifier that incorporates kNN and GMM using 'max' rule. Inclusion of a new feature called elliptic variance during classification phase has significantly reduced the false positives. An Integrated Approach using ASG and the Hybrid classifier reports the best sensitivity of 87% with 95.53% specificity.
引用
收藏
页码:462 / 467
页数:6
相关论文
共 50 条
  • [1] DETECTION OF RED LESIONS IN DIGITAL FUNDUS IMAGES
    Kande, Giri Babu
    Savithri, T. Satya
    Subbaiah, P. Venkata
    Tagore, M. R. N.
    [J]. 2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, : 558 - +
  • [2] RED LESIONS DETECTION IN DIGITAL FUNDUS IMAGES
    Balasubramanian, S.
    Pradhan, Sandip
    Chandrasekaran, V.
    [J]. 2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 2932 - 2935
  • [3] Automatic detection of red lesions in digital color fundus photographs
    Niemeijer, M
    van Ginneken, B
    Staal, J
    Suttorp-Schulten, MSA
    Abràmoff, MD
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2005, 24 (05) : 584 - 592
  • [4] A Novel Approach for Red Lesions Detection Using Superpixel Multi-Feature Classification in Color Fundus Images
    Zhou, Wei
    Wu, Chengdong
    Chen, Dali
    Wang, Zhenzhu
    Yi, Yugen
    Du, Wenyou
    [J]. 2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 6643 - 6648
  • [5] A novel integrated approach using dynamic thresholding and edge detection (IDTED) for automatic detection of exudates in digital fundus retinal images
    Sagar, Anantha Vidya
    Balasubramaniam, S.
    Chandrasekaran, V.
    [J]. ICCTA 2007: INTERNATIONAL CONFERENCE ON COMPUTING: THEORY AND APPLICATIONS, PROCEEDINGS, 2007, : 705 - +
  • [6] Automatic Detection of Red Lesions in Digital Color Retinal Images
    Kumar, Sharath P. N.
    Kumar, Rajesh R.
    Sathar, Anuja
    Sahasranamam, V
    [J]. 2014 INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING AND INFORMATICS (IC3I), 2014, : 1148 - 1153
  • [7] Detection of Lesions and Classification of Diabetic Retinopathy Using Fundus Images
    Paing, May Phu
    Choomchuay, Somsak
    Yodprom, Rapeeporn
    [J]. 2016 9TH BIOMEDICAL ENGINEERING INTERNATIONAL CONFERENCE (BMEICON), 2016,
  • [8] Entropy Rate Superpixel Classification for Automatic Red Lesion Detection in Fundus Images
    Romero-Oraa, Roberto
    Jimenez-Garcia, Jorge
    Garcia, Maria
    Lopez-Galvez, Maria I.
    Oraa-Perez, Javier
    Hornero, Roberto
    [J]. ENTROPY, 2019, 21 (04)
  • [9] Hybrid System for Automatic Classification of Diabetic Retinopathy using Fundus images
    Purandare, Manasi
    Noronha, Kevin
    [J]. PROCEEDINGS OF 2016 ONLINE INTERNATIONAL CONFERENCE ON GREEN ENGINEERING AND TECHNOLOGIES (IC-GET), 2016,
  • [10] An Approach Towards Automatic Detection of Toxoplasmosis using Fundus Images
    Chakravarthy, Adithi D.
    Abeyrathna, Dilanga
    Subramaniam, Mahadevan
    Chundi, Parvathi
    Halim, Muhammad Sohail
    Hasanreisoglu, Murat
    Sepah, Yasir J.
    Quan Dong Nguyen
    [J]. 2019 IEEE 19TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2019, : 710 - 717