Hypothesis Generation in Climate Research with Interactive Visual Data Exploration

被引:42
|
作者
Kehrer, Johannes [1 ]
Ladstaedter, Florian [2 ,3 ]
Muigg, Philipp [4 ,5 ]
Doleisch, Helmut [4 ,5 ]
Steiner, Andrea [2 ,3 ]
Hauser, Helwig [1 ]
机构
[1] Univ Bergen, Dept Informat, N-5008 Bergen, Norway
[2] Graz Univ, Wegener Ctr Climate & Global Change WegCtr, A-8010 Graz, Austria
[3] Graz Univ, Inst Geophys Astrophys & Meteorol, A-8010 Graz, Austria
[4] VRVis Res Ctr, Vienna, Austria
[5] SimVis GmbH, Vienna, Austria
基金
奥地利科学基金会;
关键词
Interactive visual hypothesis generation; interactive visual exploration and analysis; visualization for climate research;
D O I
10.1109/TVCG.2008.139
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
One of the most prominent topics in climate research is the investigation, detection, and allocation of climate change. In this paper, we aim at identifying regions in the atmosphere (e.g., certain height layers) which can act as sensitive and robust indicators for climate change. We demonstrate how interactive visual data exploration of large amounts of multi-variate and time-dependent climate data enables the steered generation of promising hypotheses for subsequent statistical evaluation. The use of new visualization and interaction technology-in the context of a coordinated multiple views framework-allows not only to identify these promising hypotheses, but also to efficiently narrow down parameters that are required in the process of computational data analysis. Two datasets, namely an ECHAM5 climate model run and the ERA-40 reanalysis incorporating observational data, are investigated. Higher-order information such as linear trends or signal-to-noise ratio is derived and interactively explored in order to detect and explore those regions which react most sensitively to climate change. As one conclusion from this study, we identify an excellent potential for usefully generalizing our approach to other, similar application cases, as well.
引用
收藏
页码:1579 / 1586
页数:8
相关论文
共 50 条
  • [1] Next generation search interfaces - Interactive data exploration and hypothesis formulation
    Hunter, J
    Falkovych, K
    Little, S
    [J]. RESEARCH AND ADVANCED TECHNOLOGY FOR DIGITAL LIBRARIES, 2004, 3232 : 86 - 98
  • [2] SimVis: An Interactive Visual Field Exploration Tool Applied to Climate Research
    Ladstaedter, F.
    Steiner, A. K.
    Lackner, B. C.
    Kirchengast, G.
    Muigg, P.
    Kehrer, J.
    Doleisch, H.
    [J]. NEW HORIZONS IN OCCULTATION RESEARCH: STUDIES IN ATMOSPHERE AND CLIMATE, 2009, : 235 - +
  • [3] Interactive Exploration of Data with Visual Metaphors
    Cybulski, Jacob L.
    Keller, Susan
    Saundage, Dilal
    [J]. INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2015, 25 (02) : 231 - 252
  • [4] Interactive maps for visual data exploration
    Andrienko, GL
    Andrienko, NV
    [J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 1999, 13 (04) : 355 - 374
  • [5] Exploration of Climate Data Using Interactive Visualization
    Ladstaedter, Florian
    Steiner, Andrea K.
    Lackner, Bettina C.
    Pirscher, Barbara
    Kirchengast, Gottfried
    Kehrer, Johannes
    Hauser, Helwig
    Muigg, Philipp
    Doleisch, Helmut
    [J]. JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2010, 27 (04) : 667 - 679
  • [6] A visual language for Interactive Data Exploration and Analysis
    Selfridge, P
    Srivastava, D
    [J]. IEEE SYMPOSIUM ON VISUAL LANGUAGES, PROCEEDINGS, 1996, : 84 - 85
  • [7] Interactive visual exploration of surgical process data
    Benedikt Mayer
    Monique Meuschke
    Jimmy Chen
    Beat P. Müller-Stich
    Martin Wagner
    Bernhard Preim
    Sandy Engelhardt
    [J]. International Journal of Computer Assisted Radiology and Surgery, 2023, 18 : 127 - 137
  • [8] Interactive framework for the visual exploration of colonic data
    Males, Jan
    Monclus, Eva
    Diaz, Jose
    Navazo, Isabel
    Vazquez, Pere-Pau
    [J]. COMPUTERS & GRAPHICS-UK, 2020, 91 : 39 - 51
  • [9] Interactive visual exploration of surgical process data
    Mayer, Benedikt
    Meuschke, Monique
    Chen, Jimmy
    Muller-Stich, Beat P.
    Wagner, Martin
    Preim, Bernhard
    Engelhardt, Sandy
    [J]. INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2023, 18 (01) : 127 - 137
  • [10] A Tool for Subjective and Interactive Visual Data Exploration
    Kang, Bo
    Puolamaki, Kai
    Lijffijt, Jefrey
    De Bie, Tijl
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2016, PT III, 2016, 9853 : 3 - 7