On low-dimensional manifolds with isometric SO0(p, q)-actions

被引:6
|
作者
Olafsson, Gestur [1 ]
Quiroga-Barranco, Raul [2 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Ctr Invest Matemat, Guanajuato 36000, Mexico
基金
美国国家科学基金会;
关键词
PSEUDO-RIEMANNIAN MANIFOLDS; TOTALLY GEODESIC FOLIATIONS; SIMPLE LIE-GROUPS; GEOMETRIC MANIFOLDS; CONFORMAL ACTIONS;
D O I
10.1007/s00031-012-9194-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a non-compact simple Lie group with Lie algebra . Denote with m() the dimension of the smallest non-trivial -module with an invariant non-degenerate symmetric bilinear form. For an irreducible finite volume pseudo-Riemannian analytic manifold M it is observed that dim(M) a parts per thousand yenaEuro parts per thousand dim(G) + m() when M admits an isometric G-action with a dense orbit. The Main Theorem considers the case , providing an explicit description of M when the bound is achieved. In such a case, M is (up to a finite covering) the quotient by a lattice of either (SO) over tilde (0) (p + 1; q) or (SO) over tilde (0) (p; q + 1).
引用
收藏
页码:835 / 860
页数:26
相关论文
共 50 条