On low-dimensional manifolds with isometric SO0(p, q)-actions

被引:6
|
作者
Olafsson, Gestur [1 ]
Quiroga-Barranco, Raul [2 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Ctr Invest Matemat, Guanajuato 36000, Mexico
基金
美国国家科学基金会;
关键词
PSEUDO-RIEMANNIAN MANIFOLDS; TOTALLY GEODESIC FOLIATIONS; SIMPLE LIE-GROUPS; GEOMETRIC MANIFOLDS; CONFORMAL ACTIONS;
D O I
10.1007/s00031-012-9194-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a non-compact simple Lie group with Lie algebra . Denote with m() the dimension of the smallest non-trivial -module with an invariant non-degenerate symmetric bilinear form. For an irreducible finite volume pseudo-Riemannian analytic manifold M it is observed that dim(M) a parts per thousand yenaEuro parts per thousand dim(G) + m() when M admits an isometric G-action with a dense orbit. The Main Theorem considers the case , providing an explicit description of M when the bound is achieved. In such a case, M is (up to a finite covering) the quotient by a lattice of either (SO) over tilde (0) (p + 1; q) or (SO) over tilde (0) (p; q + 1).
引用
收藏
页码:835 / 860
页数:26
相关论文
共 50 条
  • [22] Identification of low-dimensional manifolds in turbulent flames
    Parente, A.
    Sutherland, J. C.
    Tognotti, L.
    Smith, P. J.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2009, 32 : 1579 - 1586
  • [23] Low-dimensional manifolds in tropospheric chemical systems
    Tomlin, AS
    Whitehouse, L
    Lowe, R
    Pilling, MJ
    FARADAY DISCUSSIONS, 2001, 120 : 125 - 146
  • [24] ON THE HOMOLOGY OF LOW-DIMENSIONAL COHOMOGENEITY ONE MANIFOLDS
    Hoelscher, Corey A.
    TRANSFORMATION GROUPS, 2010, 15 (01) : 115 - 133
  • [25] LOW-DIMENSIONAL DECOMPOSITION OF MANIFOLDS IN PRESENCE OF OUTLIERS
    Sedghi, Mahlagha
    Atia, George
    Georgiopoulos, Michael
    2019 IEEE 29TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2019,
  • [26] Empirical low-dimensional manifolds in composition space
    Yang, Yue
    Pope, Stephen B.
    Chen, Jacqueline H.
    COMBUSTION AND FLAME, 2013, 160 (10) : 1967 - 1980
  • [27] On the homology of low-dimensional cohomogeneity one manifolds
    Corey A. Hoelscher
    Transformation Groups, 2010, 15 : 115 - 133
  • [28] CONSTRUCTION OF BRANCHED COVERINGS OF LOW-DIMENSIONAL MANIFOLDS
    BERSTEIN, I
    EDMONDS, AL
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 247 (JAN) : 87 - 124
  • [29] Embedding products of low-dimensional manifolds into Rm
    Akhmetiev, PM
    Repovs, D
    Skopenkov, AB
    TOPOLOGY AND ITS APPLICATIONS, 2001, 113 (1-3) : 7 - 12
  • [30] Intrinsic low-dimensional manifolds of strained and unstrained flames
    Schmidt, D
    Blasenbrey, T
    Maas, U
    COMBUSTION THEORY AND MODELLING, 1998, 2 (02) : 135 - 152