Exponential-constructible functions in P-minimal structures

被引:2
|
作者
Chambille, Saskia [1 ]
Kovacsics, Pablo Cubides [2 ]
Leenknegt, Eva [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, Celestijnenlaan 200B, B-3001 Heverlee, Belgium
[2] Tech Univ Dresden, Fachrichtung Math, Inst Algebra, Zellescher Weg 12-14, D-01062 Dresden, Germany
基金
欧洲研究理事会;
关键词
P-minimality; p-adic integration; constructible functions; exponential-constructible functions; CELL DECOMPOSITION; SETS;
D O I
10.1142/S0219061320500051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Exponential-constructible functions are an extension of the class of constructible functions. This extension was formulated by Cluckers and Loeser in the context of semialgebraic and sub-analytic structures, when they studied stability under integration. In this paper, we will present a natural refinement of their definition that allows for stability results to hold within the wider class of P-minimal structures. One of the main technical improvements is that we remove the requirement of definable Skolem functions from the proofs. As a result, we obtain stability in particular for all intermediate structures between the semi-algebraic and the sub- analytic languages.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] LOJASIEWICZ INEQUALITY IN P-MINIMAL STRUCTURES
    Srhir, Ahmed
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2021, 12 (04): : 16 - 24
  • [2] Clustered cell decomposition in P-minimal structures
    Chambille, Saskia
    Kovacsics, Pablo Cubides
    Leenknegt, Eva
    ANNALS OF PURE AND APPLIED LOGIC, 2017, 168 (11) : 2050 - 2086
  • [3] INTEGRATION AND CELL DECOMPOSITION IN P-MINIMAL STRUCTURES
    Kovacsics, Pablo Cubides
    Leenknegt, Eva
    JOURNAL OF SYMBOLIC LOGIC, 2016, 81 (03) : 1124 - 1141
  • [4] A P-MINIMAL STRUCTURE WITHOUT DEFINABLE SKOLEM FUNCTIONS
    Kovacsics, Pablo Cubides
    Kien Huu Nguyen
    JOURNAL OF SYMBOLIC LOGIC, 2017, 82 (02) : 778 - 786
  • [5] DIFFERENTIATION IN P-MINIMAL STRUCTURES AND A p-ADIC LOCAL MONOTONICITY THEOREM
    Kuijpers, Tristan
    Leenknegt, Eva
    JOURNAL OF SYMBOLIC LOGIC, 2014, 79 (04) : 1133 - 1147
  • [6] ON p-UNIVERSAL AND p-MINIMAL NUMBERINGS
    Faizrahmanov, M. Kh.
    SIBERIAN MATHEMATICAL JOURNAL, 2022, 63 (02) : 365 - 373
  • [7] External geometry of p-minimal surfaces
    Tkachev, VG
    GEOMETRY FROM THE PACIFIC RIM, 1997, : 363 - 375
  • [8] Presburger sets and p-minimal fields
    Cluckers, R
    JOURNAL OF SYMBOLIC LOGIC, 2003, 68 (01) : 153 - 162
  • [9] Cell decomposition for P-minimal fields
    Mourgues, Marie-Helene
    MATHEMATICAL LOGIC QUARTERLY, 2009, 55 (05) : 487 - 492
  • [10] Definable completeness of P-minimal fields and applications
    Kovacsics, Pablo Cubides
    Delon, Francoise
    JOURNAL OF MATHEMATICAL LOGIC, 2022, 22 (02)