Automatic segmentation and annotation in radiology

被引:0
|
作者
Dankerl, P. [1 ]
Cavallaro, A. [1 ]
Uder, M. [1 ]
Hammon, M. [1 ]
机构
[1] Univ Klinikum Erlangen, Inst Radiol, D-91054 Erlangen, Germany
来源
RADIOLOGE | 2014年 / 54卷 / 03期
关键词
Semantics; Ontology; Intelligent software; Computer-aided decision support; Workflow improvement; CT SCANS; IMAGE RETRIEVAL; LIVER; MODEL;
D O I
10.1007/s00117-013-2557-7
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The technical progress and broader indications for cross-sectional imaging continuously increase the number of radiological images to be assessed. However, as the amount of image information and available resources (radiologists) do not increase at the same pace and the standards of radiological interpretation and reporting remain consistently high, radiologists have to rely on computer-based support systems. Novel semantic technologies and software relying on structured ontological knowledge are able to "understand" text and image information and interconnect both. This allows complex database queries with both the input of text and image information to be accomplished. Furthermore, semantic software in combination with automatic detection and segmentation of organs and body regions facilitates personalized supportive information in topographical accordance and generates additional information, such as organ volumes. These technologies promise improvements in workflow; however, great efforts and close cooperation between developers and users still lie ahead.
引用
收藏
页码:265 / 270
页数:6
相关论文
共 50 条
  • [1] Automatic segmentation and annotation in radiology [Automatisierte Segmentierung und Annotation in der Radiologie]
    Dankerl P.
    Cavallaro A.
    Uder M.
    Hammon M.
    Der Radiologe, 2014, 54 (3): : 265 - 270
  • [2] Automatic Annotation of Narrative Radiology Reports
    Krsnik, Ivan
    Glavas, Goran
    Krsnik, Marina
    Miletic, Damir
    Stajduhar, Ivan
    DIAGNOSTICS, 2020, 10 (04)
  • [3] Archeology Images Segmentation for the Automatic Annotation
    Ben Salah, Marwa
    Yengui, Ameni
    Neji, Mahmoud
    INNOVATION MANAGEMENT AND EDUCATION EXCELLENCE THROUGH VISION 2020, VOLS I -XI, 2018, : 754 - 761
  • [4] Automatic segmentation and annotation of audio archive documents
    Bohac, Marek
    Blavka, Karel
    2011 10TH INTERNATIONAL WORKSHOP ON ELECTRONICS, CONTROL, MEASUREMENT AND SIGNALS (ECMS), 2011, : 61 - 66
  • [5] Automatic Annotation for Semantic Segmentation in Indoor Scenes
    Reza, Md Alimoor
    Naik, Akshay U.
    Chen, Kai
    Crandall, David J.
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 4970 - 4976
  • [6] Automatic image annotation for fluorescent cell nuclei segmentation
    Englbrecht, Fabian
    Ruider, Iris E.
    Bausch, Andreas R.
    PLOS ONE, 2021, 16 (04):
  • [7] Automatic Image Annotation Using Multiple Grid Segmentation
    Arellano, Gerardo
    Enrique Sucar, Luis
    Morales, Eduardo F.
    ADVANCES IN ARTIFICIAL INTELLIGENCE, MICAI 2010, PT I, 2010, 6437 : 278 - 289
  • [8] Automatic Semantic Segmentation and Annotation of MOOC Lecture Videos
    Das, Ananda
    Das, Partha Pratim
    DIGITAL LIBRARIES AT THE CROSSROADS OF DIGITAL INFORMATION FOR THE FUTURE, ICADL 2019, 2019, 11853 : 181 - 188
  • [9] Active learning reduces annotation burden in automatic cell segmentation
    Chowdhury, Aritra
    Biswas, Sujoy K.
    Bianco, Simone
    MEDICAL IMAGING 2021 - DIGITAL PATHOLOGY, 2021, 11603
  • [10] Invisible Marker: Automatic Annotation of Segmentation Masks for Object Manipulation
    Takahashi, Kuniyuki
    Yonekura, Kenta
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 8431 - 8438