DNN Based Camera and Lidar Fusion Framework for 3D Object Recognition

被引:0
|
作者
Zhang, K. [1 ]
Wang, S. J. [2 ]
Ji, L. [3 ]
Wang, C. [1 ]
机构
[1] Brilliance Automobile Engn Res Inst, EE Dept, Shenyang 110141, Peoples R China
[2] Shenyang Univ Technol, Sch Mech Engn, Shenyang 110023, Peoples R China
[3] Shenyang Aerosp Univ, Sch Mechatron Engn, Shenyang 110136, Peoples R China
关键词
D O I
10.1088/1742-6596/1518/1/012044
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A 3-stages deep neural network (DNN) based camera and lidar fusion framework for 3D objects recognition is proposed in this paper. First, to leverage the high resolution of camera and 3D spatial information of Lidar, region proposal network (RPN) is trained to generate proposals from RGB image feature maps and bird-view (BV) feature maps, these proposals are then lifted into 3D proposals. Then, a segmentation network is used to extract object points directly from points inside these 3D proposals. At last, 3D object bounding box instances are extracted from the interested object points by an estimation network followed after a translation by a light-weight TNet, which is a special supervised spatial transformer network (STN). Experiment results show that this proposed 3d object recognition framework can produce considerable result as the other leading methods on KITTI 3D object detection datasets.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] A Frustum-based probabilistic framework for 3D object detection by fusion of LiDAR and camera data
    Gong, Zheng
    Lin, Haojia
    Zhang, Dedong
    Luo, Zhipeng
    Zelek, John
    Chen, Yiping
    Nurunnabi, Abdul
    Wang, Cheng
    Li, Jonathan
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 159 : 90 - 100
  • [2] BAFusion: Bidirectional Attention Fusion for 3D Object Detection Based on LiDAR and Camera
    Liu, Min
    Jia, Yuanjun
    Lyu, Youhao
    Dong, Qi
    Yang, Yanyu
    SENSORS, 2024, 24 (14)
  • [3] Rethinking the Late Fusion of LiDAR-Camera Based 3D Object Detection
    Yu, Lehang
    Zhang, Jing
    Liu, Zhong
    Yue, Haosong
    Chen, Weihai
    2024 IEEE 19TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, ICIEA 2024, 2024,
  • [4] A LiDAR-Camera Fusion 3D Object Detection Algorithm
    Liu, Leyuan
    He, Jian
    Ren, Keyan
    Xiao, Zhonghua
    Hou, Yibin
    INFORMATION, 2022, 13 (04)
  • [5] DeepFusionMOT: A 3D Multi-Object Tracking Framework Based on Camera-LiDAR Fusion With Deep Association
    Wang, Xiyang
    Fu, Chunyun
    Li, Zhankun
    Lai, Ying
    He, Jiawei
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (03): : 8260 - 8267
  • [6] CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection
    Pang, Su
    Morris, Daniel
    Radha, Hayder
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 10386 - 10393
  • [7] BEV Space 3D Object Detection Algorithm Based on Fusion of Infrared Camera and LiDAR
    Wang Wuyue
    Xu Zhaofei
    Qu Chunyan
    Lin Ying
    Chen Yufeng
    Liao Jian
    ACTA PHOTONICA SINICA, 2024, 53 (01)
  • [8] SupFusion: Supervised LiDAR-Camera Fusion for 3D Object Detection
    Qin, Yiran
    Wang, Chaoqun
    Kang, Zijian
    Ma, Ningning
    Li, Zhen
    Zhang, Ruimao
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 21957 - 21967
  • [9] 3D Vehicle Detection Based on LiDAR and Camera Fusion
    Cai, Yingfeng
    Zhang, Tiantian
    Wang, Hai
    Li, Yicheng
    Liu, Qingchao
    Chen, Xiaobo
    AUTOMOTIVE INNOVATION, 2019, 2 (04) : 276 - 283
  • [10] 3D Vehicle Detection Based on LiDAR and Camera Fusion
    Yingfeng Cai
    Tiantian Zhang
    Hai Wang
    Yicheng Li
    Qingchao Liu
    Xiaobo Chen
    Automotive Innovation, 2019, 2 : 276 - 283