Lattice anharmonicity in low-dimensional carbon systems

被引:23
|
作者
Bonin, Nicola [2 ]
Rao, Rahul [1 ]
Rao, Apparao M. [3 ]
Marzari, Nicola [2 ]
Menendez, Jose [4 ]
机构
[1] UTC Inc, Air Force Res Lab, Dayton, OH USA
[2] MIT, Cambridge, MA 02139 USA
[3] Clemson Univ, Clemson, SC USA
[4] Arizona State Univ, Tempe, AZ USA
来源
基金
美国国家科学基金会;
关键词
D O I
10.1002/pssb.200879659
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The anharmonic properties of low-dimensional carbon crystal lattices are reviewed. The energy and crystal momentum conservation rules in two- and one-dimensional crystals lead to a drastic reduction of the phase space available for anharmonic phonon decay. This is illustrated with first principles calculations of the anharmonic properties of graphite and graphene. Experimental Raman linewidth data for the Radial Breathing Mode (RBM) in suspended single-walled carbon nanotubes are also interpreted in terms of a simple model in which a phonon decay bottleneck induced by the low dimensionality leads to a population time dependence in which a fast initial decay is followed by a slow decay determined by the decay rate of a large population of secondary phonons. These results are key to understanding the combined dynamics of electrons and phonons that determines the electrical transport properties in low-dimensional carbon nanostructures. In the case of the RBM in carbon nanotubes, they raise the intriguing possibility of using the linewidth of the Raman peak to determine the, chirality of the nanotube. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:2149 / 2154
页数:6
相关论文
共 50 条
  • [1] Electronic Structure of Low-Dimensional Carbon π-Systems
    Garcia-Lastra, J. M.
    Boukahil, Idris
    Qiao, Ruimin
    Rubio, Angel
    Himpsel, F. J.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (23): : 12362 - 12368
  • [2] Low-dimensional systems
    Borovitskaya, Elena
    Shur, Michael S.
    [J]. International Journal of High Speed Electronics and Systems, 2002, 12 (01) : 1 - 14
  • [3] Electrodynamics of Low-Dimensional Structures: Lattice Dynamics Formalism for Carbon Nanotubes
    Mikki, Said M.
    Kishk, Ahmed A.
    [J]. 2008 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-9, 2008, : 1556 - 1559
  • [4] Low-Dimensional Ruthenates with Honeycomb Lattice
    Streltsov, S. V.
    [J]. PHYSICS OF METALS AND METALLOGRAPHY, 2018, 119 (13): : 1276 - 1279
  • [5] Low-Dimensional Ruthenates with Honeycomb Lattice
    S. V. Streltsov
    [J]. Physics of Metals and Metallography, 2018, 119 : 1276 - 1279
  • [6] Low-dimensional supersymmetric lattice models
    Bergner, G.
    Kaestner, T.
    Uhlmann, S.
    Wipf, A.
    [J]. ANNALS OF PHYSICS, 2008, 323 (04) : 946 - 988
  • [7] LATTICE HEAT-CAPACITY OF LOW-DIMENSIONAL SYSTEMS - PSEUDOELASTIC APPROXIMATION
    KOPINGA, K
    VANDERLEEDEN, P
    DEJONGE, WJM
    [J]. PHYSICAL REVIEW B, 1976, 14 (04): : 1519 - 1530
  • [8] Phonons in low-dimensional systems
    Fritsch, J
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (34) : 7611 - 7626
  • [9] THERMODYNAMICS OF LOW-DIMENSIONAL SYSTEMS
    KOPINGA, K
    [J]. JOURNAL DE CHIMIE PHYSIQUE ET DE PHYSICO-CHIMIE BIOLOGIQUE, 1989, 86 (05) : 1023 - 1039
  • [10] Lasing in low-dimensional systems
    Oberli, DY
    [J]. ELECTRON AND PHOTON CONFINEMENT IN SEMICONDUCTOR NANOSTRUCTURES, 2003, 150 : 303 - 325