Two different remote sensing techniques for monitoring crop coefficient and water requirement of cotton

被引:0
|
作者
Taghvaeian, Saleh [1 ]
Neale, Christopher M. U. [1 ]
Dos Santos, Carlos A. C. [2 ]
Watts, Doyle [3 ]
Osterberg, John [4 ]
Sritharan, Subramania I. [5 ]
机构
[1] Utah State Univ, Civil & Environm Engn Dept, Logan, UT 84322 USA
[2] Univ Fed Campina Grande, Campina Grande, Brazil
[3] Wright State Univ, Dept Earth & Environm Sci, Dayton, OH USA
[4] US Bur Reclamat, Denver Fed Ctr, Denver, CO USA
[5] Cent State Univ, Int Ctr Water Resources Management, Wilberforce, OH 45384 USA
来源
关键词
evapotranspiration; crop coefficient; SEBAL; FAO-56; LCRAS; southern California; USA; cotton;
D O I
暂无
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Crop coefficient of cotton is estimated using two remote sensing techniques: an energy balance approach (SEBAL) and a reflectance-based method (K-cbrf). The results are compared with tabulated values in the FAO-56 paper, as well as the K-c values developed by the US Bureau of Reclamation (USBR) to be used in the "Lower Colorado River Accounting System (LCRAS)." Crop coefficients from all four sources (SEBAL, K-cbrf, FAO-56, and LCRAS) are analysed to approximate daily and seasonal water requirement of cotton for the growing season of 2008. The results show that both FAO-56 and LCRAS underestimate cotton irrigation demand due to assuming a shorter growing season and ignoring a heavy pre-irrigation event. Remotely sensed estimates of water requirement were also validated using actual irrigation depth data.
引用
收藏
页码:89 / +
页数:2
相关论文
共 50 条
  • [1] Monitoring Cotton Crop Growth Radar remote sensing
    Jadav, Ravindra
    Gogoi, Priti Rekha
    Hans, Aradhana Lucky
    Selvam, N. Thamizh
    Deobhanj, Sanghamitra
    Chetia, Monisha
    Unni, Anjana
    [J]. CURRENT SCIENCE, 2020, 118 (06): : 859 - 860
  • [2] Assessment of crop water requirement of maize using remote sensing and GIS
    Parmar, Sanjay H.
    Patel, G. R.
    Tiwari, M. K.
    [J]. SMART AGRICULTURAL TECHNOLOGY, 2023, 4
  • [3] Assessment of Crop Water Requirement of Maize Using Remote Sensing and GIS
    Anand Agricultural University, India
    不详
    不详
    [J].
  • [4] Agricultural Irrigation Water Requirement and Its Response to Climatic Factors Based on Remote Sensing and Single Crop Coefficient Method
    Sun, Jiaxin
    Chen, Liwen
    Qi, Peng
    Zhang, Guangxin
    [J]. WATER RESOURCES MANAGEMENT, 2024,
  • [5] Water stress coefficient determined by orbital remote sensing techniques
    Alves, Elvis da S.
    Filgueiras, Roberto
    Rodrigues, Lineu N.
    da Cunha, Fernando F.
    Aleman, Catariny C.
    [J]. REVISTA BRASILEIRA DE ENGENHARIA AGRICOLA E AMBIENTAL, 2020, 24 (12): : 847 - 853
  • [6] REMOTE SENSING INDICATORS FOR CROP GROWTH MONITORING AT DIFFERENT SCALES
    Li, Zongnan
    Chen, Zhongxin
    [J]. 2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 4062 - 4065
  • [7] Monitoring cotton crop condition through synergy of optical and radar remote sensing
    Haldar, Dipanwita
    Tripathy, Rojalin
    Dave, Viral
    Dave, Rucha
    Bhattacharya, B. K.
    Misra, Arundhati
    [J]. GEOCARTO INTERNATIONAL, 2022, 37 (02) : 377 - 395
  • [8] Monitoring of water quality using remote sensing techniques
    Wen, Xingping
    Yang, Xiaofeng
    [J]. APPLIED MECHANICS AND MECHANICAL ENGINEERING, PTS 1-3, 2010, 29-32 : 2360 - +
  • [9] Real-time remote monitoring system for crop water requirement information
    Han Wenting
    Xu Zhiqing
    Zhang Yang
    Cao Pei
    Chen Xiangwei
    Ooi, Su Ki
    [J]. INTERNATIONAL JOURNAL OF AGRICULTURAL AND BIOLOGICAL ENGINEERING, 2014, 7 (06) : 37 - 46
  • [10] Estimation of Crop Water Productivity Using GIS and Remote Sensing Techniques
    Talpur, Zenobia
    Zaidi, Arjumand Z.
    Ahmed, Suhail
    Mengistu, Tarekegn Dejen
    Choi, Si-Jung
    Chung, Il-Moon
    [J]. SUSTAINABILITY, 2023, 15 (14)