Graph Edge Convolutional Neural Networks for Skeleton-Based Action Recognition

被引:99
|
作者
Zhang, Xikun [1 ,2 ]
Xu, Chang [1 ,2 ]
Tian, Xinmei [3 ]
Tao, Dacheng [1 ,2 ]
机构
[1] Univ Sydney, UBTECH Sydney Artificial Intelligence Ctr, Darlington, NSW 2008, Australia
[2] Univ Sydney, Sch Comp Sci, Fac Engn, Darlington, NSW 2008, Australia
[3] Univ Sci & Technol China, CAS Key Lab Technol Geospatial Informat Proc & Ap, Hefei 230027, Peoples R China
基金
澳大利亚研究理事会;
关键词
Convolution; Skeleton; Feature extraction; Solid modeling; Dynamics; Pose estimation; Data models; Action recognition; graph convolutional neural networks (CNNs); skeletal data;
D O I
10.1109/TNNLS.2019.2935173
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Body joints, directly obtained from a pose estimation model, have proven effective for action recognition. Existing works focus on analyzing the dynamics of human joints. However, except joints, humans also explore motions of limbs for understanding actions. Given this observation, we investigate the dynamics of human limbs for skeleton-based action recognition. Specifically, we represent an edge in a graph of a human skeleton by integrating its spatial neighboring edges (for encoding the cooperation between different limbs) and its temporal neighboring edges (for achieving the consistency of movements in an action). Based on this new edge representation, we devise a graph edge convolutional neural network (CNN). Considering the complementarity between graph node convolution and edge convolution, we further construct two hybrid networks by introducing different shared intermediate layers to integrate graph node and edge CNNs. Our contributions are twofold, graph edge convolution and hybrid networks for integrating the proposed edge convolution and the conventional node convolution. Experimental results on the Kinetics and NTU-RGB+D data sets demonstrate that our graph edge convolution is effective at capturing the characteristics of actions and that our graph edge CNN significantly outperforms the existing state-of-the-art skeleton-based action recognition methods.
引用
收藏
页码:3047 / 3060
页数:14
相关论文
共 50 条
  • [1] SKELETON-BASED ACTION RECOGNITION WITH CONVOLUTIONAL NEURAL NETWORKS
    Li, Chao
    Zhong, Qiaoyong
    Xie, Di
    Pu, Shiliang
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2017,
  • [2] Integrating vertex and edge features with Graph Convolutional Networks for skeleton-based action recognition
    Liu, Kai
    Gao, Lei
    Khan, Naimul Mefraz
    Qi, Lin
    Guan, Ling
    [J]. NEUROCOMPUTING, 2021, 466 : 190 - 201
  • [3] Recurrent graph convolutional networks for skeleton-based action recognition
    Zhu, Guangming
    Yang, Lu
    Zhang, Liang
    Shen, Peiyi
    Song, Juan
    [J]. Proceedings - International Conference on Pattern Recognition, 2020, : 1352 - 1359
  • [4] Recurrent Graph Convolutional Networks for Skeleton-based Action Recognition
    Zhu, Guangming
    Yang, Lu
    Zhang, Liang
    Shen, Peiyi
    Song, Juan
    [J]. 2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 1352 - 1359
  • [5] Fourier analysis on robustness of graph convolutional neural networks for skeleton-based action recognition
    Tanaka, Nariki
    Kera, Hiroshi
    Kawamoto, Kazuhiko
    [J]. Computer Vision and Image Understanding, 2024, 240
  • [6] Fourier analysis on robustness of graph convolutional neural networks for skeleton-based action recognition
    Tanaka, Nariki
    Kera, Hiroshi
    Kawamoto, Kazuhiko
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 240
  • [7] Skeleton-Based Action Recognition With Gated Convolutional Neural Networks
    Cao, Congqi
    Lan, Cuiling
    Zhang, Yifan
    Zeng, Wenjun
    Lu, Hanqing
    Zhang, Yanning
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (11) : 3247 - 3257
  • [8] Skeleton-Based Action Recognition with Directed Graph Neural Networks
    Shi, Lei
    Zhang, Yifan
    Cheng, Jian
    Lu, Hanqing
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 7904 - 7913
  • [9] DeGCN: Deformable Graph Convolutional Networks for Skeleton-Based Action Recognition
    Myung, Woomin
    Su, Nan
    Xue, Jing-Hao
    Wang, Guijin
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 2477 - 2490
  • [10] Temporal segment graph convolutional networks for skeleton-based action recognition
    Ding, Chongyang
    Wen, Shan
    Ding, Wenwen
    Liu, Kai
    Belyaev, Evgeny
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 110