The rank of elliptic curves with rational 2-torsion points over large fields

被引:5
|
作者
Im, BH [1 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
关键词
D O I
10.1090/S0002-9939-05-08494-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K be a number field, K an algebraic closure of K, G(K) the absolute Galois group Gal(<(K)overbar >/K), K-ab the maximal abelian extension of K and E/K an elliptic curve defined over K. In this paper, we prove that if all 2-torsion points of E/K are K-rational, then for each sigma epsilon G(K), E((K-ab)(sigma)) has infinite rank, and hence E( K s) has infinite rank.
引用
收藏
页码:1623 / 1630
页数:8
相关论文
共 50 条
  • [1] Counting rational points on elliptic curves with a rational 2-torsion point
    Naccarato F.
    [J]. Naccarato, Francesco (francesco.naccarato@sns.it), 1600, European Mathematical Society Publishing House (32): : 499 - 509
  • [2] Number Theory - Counting rational points on elliptic curves with a rational 2-torsion point
    Naccarato, Francesco
    [J]. RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2021, 32 (03) : 499 - 509
  • [3] On the Isomorphism Classes of Elliptic Curves with 2-Torsion Points
    Wu, Hongfeng
    Feng, Rongquan
    [J]. NETWORK COMPUTING AND INFORMATION SECURITY, 2012, 345 : 1 - +
  • [4] Elliptic curves with a rational 2-torsion point ordered by conductor and the boundedness of average rank
    Xiao, Stanley Yao
    [J]. ADVANCES IN MATHEMATICS, 2024, 446
  • [5] Growth of torsion of elliptic curves with full 2-torsion over quadratic cyclotomic fields
    Newman, Burton
    [J]. JOURNAL OF NUMBER THEORY, 2017, 173 : 570 - 601
  • [6] BOUNDS ON 2-TORSION IN CLASS GROUPS OF NUMBER FIELDS AND INTEGRAL POINTS ON ELLIPTIC CURVES
    Bhargava, M.
    Shankar, A.
    Taniguchi, T.
    Thorne, F.
    Tsimerman, J.
    Zhao, Y.
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 33 (04) : 1087 - 1099
  • [7] Diophantine triples and construction of high-rank elliptic curves over Q with three nontrivial 2-torsion points
    Dujella, A
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2000, 30 (01) : 157 - 164
  • [8] RATIONAL 2N-TORSION POINTS ON ELLIPTIC CURVES DEFINED OVER QUADRATIC FIELDS
    KENKU, MA
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1975, 11 (SEP): : 93 - 98
  • [9] Torsion of rational elliptic curves over quadratic fields
    Enrique González-Jiménez
    José M. Tornero
    [J]. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2014, 108 : 923 - 934
  • [10] TORSION OF RATIONAL ELLIPTIC CURVES OVER CUBIC FIELDS
    Gonzalez-Jimenez, Enrique
    Najman, Filip
    Tornero, Jose M.
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2016, 46 (06) : 1899 - 1917