Existence and uniqueness of positive solution for non-variational elliptic systems

被引:1
|
作者
de Araujo, Anderson L. A. [1 ]
Ferreira Leite, Edir Junior [1 ]
机构
[1] Univ Fed Vicosa, Dept Matemat, Ave Peter Henry Rolfs S-N, BR-36570900 Vicosa, MG, Brazil
关键词
Elliptic system; Existence of solution; Galerkin scheme; Comparison principle; INEQUALITY;
D O I
10.1016/j.jmaa.2020.124284
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of solutions for strongly coupled elliptic systems in non-variational form involving second order uniformly elliptic linear operators in Omega. We also derive classes of systems having a multiplicity of solutions and the uniqueness of a solution. For this purpose, we use the Galerkin scheme in the product of Hilbert spaces. Using the comparison principle for systems of Lane-Emden we compare the obtained solutions. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A non-variational approach to the existence of nonzero positive solutions for elliptic systems
    Cid, Jose Angel
    Infante, Gennaro
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (04) : 3151 - 3162
  • [2] A non-variational approach to the existence of nonzero positive solutions for elliptic systems
    José Ángel Cid
    Gennaro Infante
    Journal of Fixed Point Theory and Applications, 2017, 19 : 3151 - 3162
  • [3] Non-variational elliptic systems in dimension two: a priori bounds and existence of positive solutions
    Djairo G. de Figueiredo
    João Marcos do Ó
    Bernhard Ruf
    Journal of Fixed Point Theory and Applications, 2008, 4 : 77 - 96
  • [4] Non-variational elliptic systems in dimension two: a priori bounds and existence of positive solutions
    de Figueiredo, Djairo G.
    Joao, Marcos do O.
    Ruf, Bernhard
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2008, 4 (01) : 77 - 96
  • [5] Positive Solutions for Non-Variational Fractional Elliptic Systems with Negative Exponents
    de Araujo, Anderson L. A.
    Faria, Luiz F. O.
    Leite, Edir J. F.
    Miyagaki, Olimpio H.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2021, 40 (01): : 111 - 129
  • [6] A PRIORI BOUNDS AND POSITIVE SOLUTIONS FOR NON-VARIATIONAL FRACTIONAL ELLIPTIC SYSTEMS
    Ferreira Leite, Edir Junior
    Montenegro, Marcos
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2017, 30 (11-12) : 947 - 974
  • [7] Non-variational weakly coupled elliptic systems
    Mónica Clapp
    Andrzej Szulkin
    Analysis and Mathematical Physics, 2022, 12
  • [8] Non-variational weakly coupled elliptic systems
    Clapp, Monica
    Szulkin, Andrzej
    ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (02)
  • [9] A priori bounds for positive solutions of a non-variational elliptic system
    de Figueiredo, DG
    Yang, JF
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (11-12) : 2305 - 2321
  • [10] Existence of solutions to a non-variational singular elliptic system with unbounded weights
    De Cave, L. M.
    Oliva, F.
    Strani, M.
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (2-3) : 236 - 247