On finite dual Cayley graphs

被引:0
|
作者
Pan, Jiangmin [1 ]
机构
[1] Yunnan Univ Finance & Econ, Sch Math & Stat, Kunming, Yunnan, Peoples R China
来源
OPEN MATHEMATICS | 2020年 / 18卷
基金
中国国家自然科学基金;
关键词
dual Cayley graph; identification; construction; transitivity; PERMUTATION-GROUPS;
D O I
10.1515/math-2020-0141
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Cayley graph Gamma on a group G is called a dual Cayley graph on G if the left regular representation of G is a subgroup of the automorphism group of Gamma (note that the right regular representation of G is always an automorphism group of Gamma). In this article, we study finite dual Cayley graphs regarding identification, construction, transitivity and such graphs with automorphism groups as small as possible. A few problems worth further research are also proposed.
引用
收藏
页码:595 / 602
页数:8
相关论文
共 50 条
  • [1] Percolation on finite Cayley graphs
    Malon, Christopher
    Pak, Igor
    COMBINATORICS PROBABILITY & COMPUTING, 2006, 15 (04): : 571 - 588
  • [2] Isomorphisms of finite Cayley graphs
    Li, CH
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1997, 56 (01) : 169 - 172
  • [3] On the spectrum of finite Cayley graphs
    Ghorbani, Modjtaba
    Larki, Farzaneh Nowroozi
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2018, 21 (01): : 83 - 112
  • [4] On Finite Subnormal Cayley Graphs
    Song, Shu Jiao
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (03):
  • [5] On isomorphisms of finite Cayley graphs
    Conder, M
    Li, CH
    EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (08) : 911 - 919
  • [6] Independent finite automata on Cayley graphs
    Ville Salo
    Ilkka Törmä
    Natural Computing, 2017, 16 : 411 - 426
  • [7] Normal Cayley graphs of finite groups
    Changqun Wang
    Dianjun Wang
    Mingyao Xu
    Science in China Series A: Mathematics, 1998, 41 : 242 - 251
  • [8] Normal Cayley graphs of finite groups
    王长群
    王殿军
    徐明耀
    ScienceinChina,SerA., 1998, Ser.A.1998 (03) : 242 - 251
  • [9] Relative Cayley graphs of finite groups
    Farrokhi, M. D. G.
    Rajabian, M.
    Erfanian, A.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2019, 12 (07)
  • [10] Normal Cayley graphs of finite groups
    Wang, CQ
    Wang, DJ
    Xu, MY
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1998, 41 (03): : 242 - 251