Microstructure and Mechanical Behavior of High-Entropy Alloys

被引:58
|
作者
Licavoli, Joseph J. [1 ]
Gao, Michael C. [1 ,2 ]
Sears, John S. [1 ,2 ]
Jablonski, Paul D. [1 ]
Hawk, Jeffrey A. [1 ]
机构
[1] Natl Energy Technol Lab, Albany, OR 97321 USA
[2] Natl Energy Technol Lab, AECOM, Albany, OR 97321 USA
关键词
deformation; FCC crystal structure; fracture; high-entropy alloys; microstructure; tensile properties; TENSILE PROPERTIES; PHASE-STABILITY; DEFORMATION; EVOLUTION;
D O I
10.1007/s11665-015-1679-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-entropy alloys (HEAs) have generated interest in recent years due to their unique positioning within the alloy world. By incorporating a number of elements in high proportion, usually of equal atomic percent, they have high configurational entropy, and thus, they hold the promise of interesting and useful properties such as enhanced strength and alloy stability. The present study investigates the mechanical behavior, fracture characteristics, and microstructure of two single-phase FCC HEAs CoCrFeNi and CoCrFeNiMn with some detailed attention given to melting, homogenization, and thermo-mechanical processing. Ingots approaching 8 kg in mass were made by vacuum induction melting to avoid the extrinsic factors inherent to small-scale laboratory button samples. A computationally based homogenization heat treatment was given to both alloys in order to eliminate any solidification segregation. The alloys were then fabricated in the usual way (forging, followed by hot rolling) with typical thermo-mechanical processing parameters employed. Transmission electron microscopy was subsequently used to assess the single-phase nature of the alloys prior to mechanical testing. Tensile specimens (ASTM E8) were prepared with tensile mechanical properties obtained from room temperature through 800 A degrees C. Material from the gage section of selected tensile specimens was extracted to document room and elevated temperature deformation within the HEAs. Fracture surfaces were also examined to note fracture failure modes. The tensile behavior and selected tensile properties were compared with results in the literature for similar alloys.
引用
收藏
页码:3685 / 3698
页数:14
相关论文
共 50 条
  • [1] Microstructure and Mechanical Behavior of High-Entropy Alloys
    Joseph J. Licavoli
    Michael C. Gao
    John S. Sears
    Paul D. Jablonski
    Jeffrey A. Hawk
    Journal of Materials Engineering and Performance, 2015, 24 : 3685 - 3698
  • [2] Mechanical behavior of high-entropy alloys
    Li, Weidong
    Xie, Di
    Li, Dongyue
    Zhang, Yong
    Gao, Yanfei
    Liaw, Peter K.
    PROGRESS IN MATERIALS SCIENCE, 2021, 118
  • [3] Microstructure and mechanical properties of FexCoCrNiMn high-entropy alloys
    Zhang, Tao
    Xin, Lijun
    Wu, Fufa
    Zhao, Rongda
    Xiang, Jun
    Chen, Minghua
    Jiang, Songshan
    Huang, Yongjiang
    Chen, Shunhua
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2019, 35 (10) : 2331 - 2335
  • [4] Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys
    Zhang, K. B.
    Fu, Z. Y.
    Zhang, J. Y.
    Wang, W. M.
    Wang, H.
    Wang, Y. C.
    Zhang, Q. J.
    Shi, J.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 508 (1-2): : 214 - 219
  • [5] Microstructure and mechanical properties of FexCoCrNiMn high-entropy alloys
    Tao Zhang
    Lijun Xin
    Fufa Wu
    Rongda Zhao
    Jun Xiang
    Minghua Chen
    Songshan Jiang
    Yongjiang Huang
    Shunhua Chen
    Journal of Materials Science & Technology, 2019, 35 (10) : 2331 - 2335
  • [6] Microstructure and Mechanical Properties of CoCrFeMnNiSnx High-Entropy Alloys
    X. Y. Gu
    Y. N. Dong
    Y. X. Zhuang
    J. Wang
    Metals and Materials International, 2020, 26 : 292 - 301
  • [7] Microstructure and Mechanical Properties of CoCrFeMnNiSnx High-Entropy Alloys
    Gu, X. Y.
    Dong, Y. N.
    Zhuang, Y. X.
    Wang, J.
    METALS AND MATERIALS INTERNATIONAL, 2020, 26 (03) : 292 - 301
  • [8] Microstructure and Mechanical Performance of AlxCoCrCuFeNi High-Entropy Alloys
    Liu Yuan
    Chen Min
    Li Yanxiang
    Chen Xiang
    RARE METAL MATERIALS AND ENGINEERING, 2009, 38 (09) : 1602 - 1607
  • [9] Microstructure and mechanical performance of AlxCoCrCuFeNi high-entropy alloys
    Liu, Yuan
    Chen, Min
    Li, Yanxiang
    Chen, Xiang
    Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2009, 38 (09): : 1602 - 1607
  • [10] Microstructure and mechanical properties of NixFeCoCrAl high-entropy alloys
    Ji, Guo-Ning
    Xiang, Jun
    Zhao, Rong-Da
    Wu, Fu-Fa
    Chen, Shun-Hua
    MATERIALS TODAY COMMUNICATIONS, 2022, 32