Coupling identification and reconstruction of missing features for noise-robust automatic speech recognition

被引:0
|
作者
Ma, Ning [1 ]
Barker, Jon [1 ]
机构
[1] Univ Sheffield, Dept Comp Sci, Sheffield S1 4DP, S Yorkshire, England
关键词
Missing feature reconstruction; noise-robust speech recognition; feature compensation; fragment decoding;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The standard missing feature imputation approach to noise-robust automatic speech recognition requires that a single foreground/background segmentation mask is identified prior to reconstruction. This paper presents a novel imputation approach which more closely couples the identification and reconstruction of missing features by using a probabilistic framework based on the speech fragment decoding technique. Using fragment decoding, the most joint-likely state sequence and segmentation hypothesis is identified with which the missing data region is imputed. Crucially, however, imputation can exploit the speech state sequence recovered by the fragment decoding. Further, using N-best decodings allows the clean spectrogram to be estimated as a weighted combination of reconstructions which provides some allowance for uncertainty in the estimates. Experiments on the PASCAL CHiME Challenge task show that system performance is highly dependent on the complexity of the speech models used for segmentation and imputation, and by exploiting the temporal constraint of speech the system significantly outperforms those that ignore the constraint.
引用
收藏
页码:2637 / 2640
页数:4
相关论文
共 50 条
  • [1] Noise-Robust Algorithm of Speech Features Extraction for Automatic Speech Recognition System
    Yakhnev, A. N.
    Pisarev, A. S.
    [J]. PROCEEDINGS OF THE XIX IEEE INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND MEASUREMENTS (SCM 2016), 2016, : 206 - 208
  • [2] An overview of noise-robust automatic speech recognition
    Li, Jinyu
    Deng, Li
    Gong, Yifan
    Haeb-Umbach, Reinhold
    [J]. IEEE Transactions on Audio, Speech and Language Processing, 2014, 22 (04): : 745 - 777
  • [3] An Overview of Noise-Robust Automatic Speech Recognition
    Li, Jinyu
    Deng, Li
    Gong, Yifan
    Haeb-Umbach, Reinhold
    [J]. IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2014, 22 (04) : 745 - 777
  • [4] Reconstruction of missing features for robust speech recognition
    Raj, B
    Seltzer, ML
    Stern, RM
    [J]. SPEECH COMMUNICATION, 2004, 43 (04) : 275 - 296
  • [5] Factorial Speech Processing Models for Noise-Robust Automatic Speech Recognition
    Khademian, Mahdi
    Homayounpour, Mohammad Mehdi
    [J]. 2015 23RD IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2015, : 637 - 642
  • [6] INCORPORATING MASK MODELLING FOR NOISE-ROBUST AUTOMATIC SPEECH RECOGNITION
    Koekueer, Muenevver
    Jancovic, Peter
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 3929 - 3932
  • [7] Empirical Mode Decomposition For Noise-Robust Automatic Speech Recognition
    Wu, Kuo-Hao
    Chen, Chia-Ping
    [J]. 11TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2010 (INTERSPEECH 2010), VOLS 3 AND 4, 2010, : 2074 - 2077
  • [8] A companding front end for noise-robust automatic speech recognition
    Guinness, J
    Raj, B
    Schmidt-Nielsen, B
    Turicchia, L
    Sarpeshkar, R
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 249 - 252
  • [9] Sparse coding of the modulation spectrum for noise-robust automatic speech recognition
    Sara Ahmadi
    Seyed Mohammad Ahadi
    Bert Cranen
    Lou Boves
    [J]. EURASIP Journal on Audio, Speech, and Music Processing, 2014
  • [10] Novel frequency masking curves for noise-robust automatic speech recognition
    Chen, Chia-Ping
    Yeh, Ja-Zang
    Wu, Bo-Feng
    [J]. JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2013, 36 (06) : 696 - 703