Nonzero-Sum Games of Optimal Stopping for Markov Processes

被引:6
|
作者
Attard, Natalie [1 ]
机构
[1] Univ Manchester, Sch Math, Oxford Rd, Manchester M13 9PL, Lancs, England
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2018年 / 77卷 / 03期
关键词
Nonzero-sum optimal stopping game; Nash equilibrium; Markov process; Double partial superharmonic characterisation; Principle of double smooth fit; Principle of double continuous fit; CONTINUOUS-TIME; CONVERTIBLE BONDS; STOCHASTIC GAMES; DISCRETE-TIME; OPTIONS; COST;
D O I
10.1007/s00245-016-9388-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two players are observing a right-continuous and quasi-left-continuous strong Markov process X. We study the optimal stopping problem V-sigma(1) (x) = sup(tau) M-x(1) (tau, sigma sigma) for a given stopping time sigma (resp. V-tau(2)(x) = sup(sigma) M-x(2)(tau, sigma) for given tau) where M-x(1)(tau, sigma) = E-x[G(1)(X-tau)I(tau <= sigma) + H-1(X-sigma)1 (sigma < tau] with G(1), H-1 being continuous functions satisfying some mild integrability conditions (resp. M-x(2)(tau, sigma) = E-x[G(2)(X-sigma)1(sigma < tau) H-2(X-tau)I(tau <= sigma)] with G(2), H-2 being continuous functions satisfying some mild integrability conditions). We show that if sigma = sigma D-2 = inf{t >= 0 : X-t is an element of D-2} (resp. tau = tau(D1) = inf{t >= 0 : X-t is an element of D-1}) where D-2 (resp. D-1) has a regular boundary, then V sigma(1)(D2) (resp. V tau(2)(D1)) is finely continuous If D-2 (resp. D-1) is also (finely) closed then tau(sigma D2)(*) = inf{t >= 0 : X-t is an element of D-1(sigma D2)} (resp. sigma(tau D1)(*) = inf {t >= 0 : X-t is an element of D-2(tau D1)]) where D-1(sigma D2) = {V-sigma D2(1) = G(1)} (resp. D-2(tau D1) = {V-tau D1(2) = G(2)}) is optimal for player one (resp. player two). We then derive a partial superharmonic characterisation for V-sigma D2(1) (resp. V-tau D1(2)) which can be exploited in examples to construct a pair of first entry times that is a Nash equilibrium.
引用
收藏
页码:567 / 597
页数:31
相关论文
共 50 条