Random walks on the braid group B3 and magnetic translations in hyperbolic geometry

被引:5
|
作者
Voituriez, R [1 ]
机构
[1] Univ Paris 11, Lab Phys Theor & Modeles Stat, F-91405 Orsay, France
关键词
braid groups; discrete magnetic Schrodinger operators representation theory; hyperbolic geometry;
D O I
10.1016/S0550-3213(01)00590-9
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study random walks on the three-strand braid group B-3, and in particular compute the drift, or average topological complexity of a random braid, as well as the probability of trivial entanglement. These results involve the study of magnetic random walks on hyperbolic graphs (hyperbolic Harper-Hofstadter problem), what enables to build a faithful representation of B-3 as generalized magnetic translation operators for the problem of a quantum particle on the hyperbolic plane. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:675 / 688
页数:14
相关论文
共 50 条
  • [1] Hurwitz equivalence in the braid group B3
    Ben-Itzhak, T
    Teicher, M
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2003, 13 (03) : 277 - 286
  • [2] Representations of the braid group B3 and of SL(2,Z)
    Tuba, I
    Wenzl, H
    PACIFIC JOURNAL OF MATHEMATICS, 2001, 197 (02) : 491 - 510
  • [3] Closed-form expression for the braid entropy in the group B3
    O. N. Biryukov
    Mathematical Notes, 2015, 97 : 641 - 643
  • [4] THE COHOMOLOGY OF THE BRAID GROUP B3 AND OF SL2(Z) WITH COEFFICIENTS IN A GEOMETRIC REPRESENTATION
    Callegaro, F.
    Cohen, F. R.
    Salvetti, M.
    QUARTERLY JOURNAL OF MATHEMATICS, 2013, 64 (03): : 847 - 889
  • [5] B3 BLOCK REPRESENTATIONS OF DIMENSION 6 AND BRAID REVERSIONS
    Mayassi, Taher I.
    Abdulrahim, Mohammad N.
    NOTE DI MATEMATICA, 2022, 42 (02): : 53 - 62
  • [6] On a class of unitary representations of the braid groups B3 and B4
    Albeverio, Sergio
    Rabanovich, Slavik
    BULLETIN DES SCIENCES MATHEMATIQUES, 2019, 153 : 35 - 56
  • [7] THE SYMPLECTIC GEOMETRY OF CLOSED EQUILATERAL RANDOM WALKS IN 3-SPACE
    Cantarella, Jason
    Shonkwiler, Clayton
    ANNALS OF APPLIED PROBABILITY, 2016, 26 (01): : 549 - 596
  • [8] Closed-form expression for the braid entropy in the group B 3
    Biryukov, O. N.
    MATHEMATICAL NOTES, 2015, 97 (3-4) : 641 - 643
  • [9] Generation of the B3*41 group of allieles as indicated by intron sequences
    Arnaiz-Villena, A.
    Moscoso, J.
    Zamora, J.
    Gomez-Casado, E.
    Serrano-Vela, I.
    Martinez-Laso, J.
    TISSUE ANTIGENS, 2006, 67 (06): : 469 - 469
  • [10] Sub-group B3: waste disposal and recycling possibilities
    Rail International, 1995, (05): : 75 - 76