On almost perfect nonlinear mappings over Fn2

被引:0
|
作者
Berger, TP [1 ]
Canteaut, A [1 ]
Charpin, P [1 ]
Laigle-Chapuy, Y [1 ]
机构
[1] LACO, Fac Sci Limoges, F-87060 Limoges, France
关键词
D O I
暂无
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
We investigate some open problems on Almost Perfect Nonlinear (APN) functions over a finite field of characteristic 2. We provide a new characterization of APN mappings and of APN permutations by means of their component functions. We also focus on the case of quadratic functions. Most notably, we prove that a class of quadratic functions cannot be APN. Our result strengthens the conjecture that all quadratic APN functions are power functions, up to equivalence.
引用
收藏
页码:2002 / 2006
页数:5
相关论文
共 50 条
  • [1] Recurrence for Fn2
    Bruckman, PS
    [J]. FIBONACCI QUARTERLY, 2001, 39 (01): : 87 - 88
  • [2] Affinity of permutations of Fn2
    Hou, XD
    [J]. DISCRETE APPLIED MATHEMATICS, 2006, 154 (02) : 313 - 325
  • [3] New families of almost perfect nonlinear power mappings
    Univ of Bergen, Bergen, Norway
    [J]. IEEE Trans Inf Theory, 2 (475-485):
  • [4] New families of almost perfect nonlinear power mappings
    Helleseth, T
    Rong, CM
    Sandberg, D
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (02) : 475 - 485
  • [5] A new family of ternary almost perfect nonlinear mappings
    Ness, Geir Jarle
    Helleseth, Tor
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (07) : 2581 - 2586
  • [6] On almost perfect nonlinear functions over F2n
    Berger, Thierry P.
    Canteaut, Anne
    Charpin, Pascale
    Laigle-Chapuy, Yann
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (09) : 4160 - 4170
  • [7] Surveying for Dwarf Galaxies Within Voids FN2 and FN8
    McNeil, Stephen
    Draper, Chris
    Moody, J. Ward
    [J]. ZELDOVICH UNIVERSE: GENESIS AND GROWTH OF THE COSMIC WEB, 2016, 11 (S308): : 614 - 615
  • [8] THE BISHOP'S TALE A COMBINATORIAL PROOF OF Fn2=2(Fn-12+Fn-22)-Fn-32
    Stevens, Gary E.
    [J]. FIBONACCI QUARTERLY, 2007, 45 (04): : 319 - 321
  • [9] ALPHA-PERFECT MAPPINGS AND ALMOST CONVERGENCE
    DICKMAN, RF
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A171 - A171
  • [10] On almost perfect nonlinear functions
    Carlet, Claude
    [J]. PROCEEDINGS OF 2007 INTERNATIONAL WORKSHOP ON SIGNAL DESIGN AND ITS APPLICATIONS IN COMMUNICATIONS, 2007, : 2 - 2