Validation indices for projective clustering

被引:2
|
作者
Chen, Lifei [1 ]
He, Shanjun [2 ]
Jiang, Qingshan [3 ,4 ]
机构
[1] Fujian Normal Univ, Sch Math & Comp Sci, Fuzhou 350108, Peoples R China
[2] Longyan Tobacco Ind Co Ltd, Longyan 364010, Peoples R China
[3] Chengdu Univ, Chengdu 610106, Peoples R China
[4] Xiamen Univ, Software Sch, Xiamen 361005, Peoples R China
来源
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
data mining; cluster validation; projective clustering; cluster validity index; VALIDITY;
D O I
10.1007/s11704-009-0051-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cluster validation is a major issue in cluster analysis of data mining, which is the process of evaluating performance of clustering algorithms under varying input conditions. Many existing validity indices address clustering results of low-dimensional data. Within high-dimensional data, many of the dimensions are irrelevant, and the clusters usually only exist in some projected subspaces spanned by different combinations of dimensions. This paper presents a solution to the problem of cluster validation for projective clustering. We propose two new measurements for the intracluster compactness and intercluster separation of projected clusters. Based on these measurements and the conventional indices, three new cluster validity indices are presented. Combined with a fuzzy projective clustering algorithm, the new indices are used to determine the number of projected clusters in high-dimensional data. The suitability of our proposal has been demonstrated through an empirical study using synthetic and real-world datasets.
引用
收藏
页码:477 / 484
页数:8
相关论文
共 50 条
  • [1] Validation indices for projective clustering
    Lifei Chen
    Shanjun He
    Qingshan Jiang
    [J]. Frontiers of Computer Science in China, 2009, 3 : 477 - 484
  • [2] Validation indices for graph clustering
    Günter, S
    Bunke, H
    [J]. PATTERN RECOGNITION LETTERS, 2003, 24 (08) : 1107 - 1113
  • [3] Comparison of internal clustering validation indices for prototype-based clustering
    Hämäläinen, Joonas
    Jauhiainen, Susanne
    Kärkkäinen, Tommi
    [J]. Algorithms, 2017, 10 (03):
  • [4] Clustering Algorithms and Validation Indices for a Wide mmWave Spectrum
    Antonescu, Bogdan
    Moayyed, Miead Tehrani
    Basagni, Stefano
    [J]. INFORMATION, 2019, 10 (09)
  • [5] From A-to-Z review of clustering validation indices
    Hassan, Bryar A.
    Tayfor, Noor Bahjat
    Hassan, Alla A.
    Ahmed, Aram M.
    Rashid, Tarik A.
    Abdalla, Naz N.
    [J]. NEUROCOMPUTING, 2024, 601
  • [6] Statistical Comparative Analysis and Evaluation of Validation Indices for Clustering Optimization
    Nguyen, Thy
    Vichman, Jason
    Yeboah, Dacosta
    Olbricht, Gayla R.
    Obafemi-Ajayi, Tayo
    [J]. 2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 3081 - 3090
  • [7] Clustering Algorithms and Validation Indices for mmWave Radio Multipath Propagation
    Moayyed, Miead Tehrani
    Antonescu, Bogdan
    Basagni, Stefano
    [J]. 2019 WIRELESS TELECOMMUNICATIONS SYMPOSIUM (WTS), 2019,
  • [8] Impact of Load Demand Dataset Characteristics on Clustering Validation Indices
    Jain, Mayank
    Jain, Mukta
    AlSkaif, Tarek
    Dev, Soumyabrata
    [J]. 2021 INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND TECHNOLOGIES (SEST), 2021,
  • [9] Analysis of genetic association using hierarchical clustering and cluster validation indices
    Pagnuco, Inti A.
    Pastore, Juan I.
    Abras, Guillermo
    Brun, Marcel
    Ballarin, Virginia L.
    [J]. GENOMICS, 2017, 109 (5-6) : 438 - 445
  • [10] Projective clustering ensembles
    Francesco Gullo
    Carlotta Domeniconi
    Andrea Tagarelli
    [J]. Data Mining and Knowledge Discovery, 2013, 26 : 452 - 511