Pseudo-spectral methods and linear instabilities in reaction-diffusion fronts

被引:10
|
作者
Jones, WB [1 ]
OBrien, JJ [1 ]
机构
[1] FLORIDA STATE UNIV,COAPS,TALLAHASSEE,FL 32306
关键词
D O I
10.1063/1.166167
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We explore the application of a pseudo-spectral Fourier method to a set of reaction-diffusion equations and compare it with a second-order finite difference method. The prototype cubic autocatalytic reaction-diffusion model as discussed by Gray and Scott [Chem. Eng. Sci. 42, 307 (1987)] with a nonequilibrium constraint is adopted. In a spatial resolution study we find that the phase speeds of one-dimensional finite amplitude waves converge more rapidly for the spectral method than for the finite difference method. Furthermore, in two dimensions the symmetry preserving properties of the spectral method are shown to be superior to those of the finite difference method. In studies of plane/axisymmetric nonlinear waves a symmetry breaking linear instability is shown to occur and is one possible route for the formation of patterns from infinitesimal perturbations to finite amplitude waves in this set of reaction-diffusion equations. (C) 1996 American Institute of Physics.
引用
收藏
页码:219 / 228
页数:10
相关论文
共 50 条
  • [1] INSTABILITIES IN PROPAGATING REACTION-DIFFUSION FRONTS
    HORVATH, D
    PETROV, V
    SCOTT, SK
    SHOWALTER, K
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (08): : 6332 - 6343
  • [2] THE PSEUDO-SPECTRAL METHOD AND PATH FOLLOWING IN REACTION-DIFFUSION BIFURCATION STUDIES
    EILBECK, JC
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (02): : 599 - 610
  • [3] A COMPARISON OF BASIS FUNCTIONS FOR THE PSEUDO-SPECTRAL METHOD FOR A MODEL REACTION-DIFFUSION PROBLEM
    EILBECK, JC
    MANORANJAN, VS
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1986, 15 (03) : 371 - 378
  • [4] INSTABILITIES IN PROPAGATING REACTION-DIFFUSION FRONTS OF THE IODATE ARSENIOUS ACID REACTION
    HORVATH, D
    SHOWALTER, K
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1995, 102 (06): : 2471 - 2478
  • [5] Fingering instabilities of exothermic reaction-diffusion fronts in porous media
    Kalliadasis, S
    Yang, J
    De Wit, A
    [J]. PHYSICS OF FLUIDS, 2004, 16 (05) : 1395 - 1409
  • [6] Instabilities in cubic reaction-diffusion fronts advected by a Poiseuille flow
    Llamoca, Edwin A.
    Vilela, P. M.
    Vasquez, Desiderio A.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2022, 231 (03): : 505 - 511
  • [7] A new multi-step pseudo-spectral method for the approximate solution of inverse reaction-diffusion equation
    Gholampoor, I
    Kajani, M. Tavassoli
    [J]. ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, (46): : 513 - 529
  • [8] AN ADAPTIVE PSEUDO-SPECTRAL METHOD FOR REACTION DIFFUSION-PROBLEMS
    BAYLISS, A
    GOTTLIEB, D
    MATKOWSKY, BJ
    MINKOFF, M
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 81 (02) : 421 - 443
  • [9] STABILITY OF REACTION-DIFFUSION FRONTS
    ZHANG, ZQ
    FALLE, SAEG
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1994, 446 (1928): : 517 - 528
  • [10] SOLUTION OF ATMOSPHERIC DIFFUSION PROBLEMS BY PSEUDO-SPECTRAL AND ORTHOGONAL COLLOCATION METHODS
    WENGLE, H
    VANDENBOSCH, B
    SEINFELD, JH
    [J]. ATMOSPHERIC ENVIRONMENT, 1978, 12 (05) : 1021 - 1032