Analysis of deep learning methods for blind protein contact prediction in CASP12

被引:61
|
作者
Wang, Sheng [1 ]
Sun, Siqi [1 ]
Xu, Jinbo [1 ]
机构
[1] Toyota Technol Inst, 6045 S Kenwood Ave, Chicago, IL 60637 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
protein folding; protein contact prediction; CASP; deep learning; coevolution analysis; RESIDUE-RESIDUE CONTACTS; SEQUENCE; EVOLUTIONARY;
D O I
10.1002/prot.25377
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Here we present the results of protein contact prediction achieved in CASP12 by our RaptorX-Contact server, which is an early implementation of our deep learning method for contact prediction. On a set of 38 free-modeling target domains with a median family size of around 58 effective sequences, our server obtained an average top L/5 long- and medium-range contact accuracy of 47% and 44%, respectively (L=length). A complete implementation has an average accuracy of 59% and 57%, respectively. Our deep learning method formulates contact prediction as a pixel-level image labeling problem and simultaneously predicts all residue pairs of a protein using a combination of two deep residual neural networks, taking as input the residue conservation information, predicted secondary structure and solvent accessibility, contact potential, and coevolution information. Our approach differs from existing methods mainly in (1) formulating contact prediction as a pixel-level image labeling problem instead of an image-level classification problem; (2) simultaneously predicting all contacts of an individual protein to make effective use of contact occurrence patterns; and (3) integrating both one-dimensional and two-dimensional deep convolutional neural networks to effectively learn complex sequence-structure relationship including high-order residue correlation. This paper discusses the RaptorX-Contact pipeline, both contact prediction and contact-based folding results, and finally the strength and weakness of our method.
引用
收藏
页码:67 / 77
页数:11
相关论文
共 50 条
  • [1] Assessment of protein assembly prediction in CASP12
    Lafita, Aleix
    Bliven, Spencer
    Kryshtafovych, Andriy
    Bertoni, Martino
    Monastyrskyy, Bohdan
    Duarte, Jose M.
    Schwede, Torsten
    Capitani, Guido
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2018, 86 : 247 - 256
  • [2] Protein structure prediction using Rosetta in CASP12
    Ovchinnikov, Sergey
    Park, Hahnbeom
    Kim, David E.
    DiMaio, Frank
    Baker, David
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2018, 86 : 113 - 121
  • [3] Assessment of contact predictions in CASP12: Co-evolution and deep learning coming of age
    Schaarschmidt, Joerg
    Monastyrskyy, Bohdan
    Kryshtafovych, Andriy
    Bonvin, Alexandre M. J. J.
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2018, 86 : 51 - 66
  • [4] An analysis and evaluation of the WeFold collaborative for protein structure prediction and its pipelines in CASP11 and CASP12
    Chen Keasar
    Liam J. McGuffin
    Björn Wallner
    Gaurav Chopra
    Badri Adhikari
    Debswapna Bhattacharya
    Lauren Blake
    Leandro Oliveira Bortot
    Renzhi Cao
    B. K. Dhanasekaran
    Itzhel Dimas
    Rodrigo Antonio Faccioli
    Eshel Faraggi
    Robert Ganzynkowicz
    Sambit Ghosh
    Soma Ghosh
    Artur Giełdoń
    Lukasz Golon
    Yi He
    Lim Heo
    Jie Hou
    Main Khan
    Firas Khatib
    George A. Khoury
    Chris Kieslich
    David E. Kim
    Pawel Krupa
    Gyu Rie Lee
    Hongbo Li
    Jilong Li
    Agnieszka Lipska
    Adam Liwo
    Ali Hassan A. Maghrabi
    Milot Mirdita
    Shokoufeh Mirzaei
    Magdalena A. Mozolewska
    Melis Onel
    Sergey Ovchinnikov
    Anand Shah
    Utkarsh Shah
    Tomer Sidi
    Adam K. Sieradzan
    Magdalena Ślusarz
    Rafal Ślusarz
    James Smadbeck
    Phanourios Tamamis
    Nicholas Trieber
    Tomasz Wirecki
    Yanping Yin
    Yang Zhang
    Scientific Reports, 8
  • [5] An analysis and evaluation of the WeFold collaborative for protein structure prediction and its pipelines in CASP11 and CASP12
    Keasar, Chen
    McGuffin, Liam J.
    Wallner, Bjorn
    Chopra, Gaurav
    Adhikari, Badri
    Bhattacharya, Debswapna
    Blake, Lauren
    Bortot, Leandro Oliveira
    Cao, Renzhi
    Dhanasekaran, B. K.
    Dimas, Itzhel
    Faccioli, Rodrigo Antonio
    Faraggi, Eshel
    Ganzynkowicz, Robert
    Ghosh, Sambit
    Ghosh, Soma
    Gieldon, Artur
    Golon, Lukasz
    He, Yi
    Heo, Lim
    Hou, Jie
    Khan, Main
    Khatib, Firas
    Khoury, George A.
    Kieslich, Chris
    Kim, David E.
    Krupa, Pawel
    Lee, Gyu Rie
    Li, Hongbo
    Li, Jilong
    Lipska, Agnieszka
    Liwo, Adam
    Maghrabi, Ali Hassan A.
    Mirdita, Milot
    Mirzaei, Shokoufeh
    Mozolewska, Magdalena A.
    Onel, Melis
    Ovchinnikov, Sergey
    Shah, Anand
    Shah, Utkarsh
    Sidi, Tomer
    Sieradzan, Adam K.
    Slusarz, Magdalena
    Slusarz, Rafal
    Smadbeck, James
    Tamamis, Phanourios
    Trieber, Nicholas
    Wirecki, Tomasz
    Yin, Yanping
    Zhang, Yang
    SCIENTIFIC REPORTS, 2018, 8
  • [6] Methods for estimation of model accuracy in CASP12
    Elofsson, Arne
    Joo, Keehyoung
    Keasar, Chen
    Lee, Jooyoung
    Maghrabi, Ali H. A.
    Manavalan, Balachandran
    McGuffin, Liam J.
    Hurtado, David Menendez
    Mirabello, Claudio
    Pilstal, Robert
    Sidi, Tomer
    Uziela, Karolis
    Wallner, Bjorn
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2018, 86 : 361 - 373
  • [7] Improved protein contact predictions with the MetaPSICOV2 server in CASP12
    Buchan, Daniel W. A.
    Jones, David T.
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2018, 86 : 78 - 83
  • [8] Assessment of hard target modeling in CASP12 reveals an emerging role of alignment-based contact prediction methods
    Abriata, Luciano A.
    Tamo, Giorgio E.
    Monastyrskyy, Bohdan
    Kryshtafovych, Andriy
    Dal Peraro, Matteo
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2018, 86 : 97 - 112
  • [9] Protein structure modeling and refinement by global optimization in CASP12
    Hong, Seung Hwan
    Joung, InSuk
    Flores-Canales, Jose C.
    Manavalan, Balachandran
    Cheng, Qianyi
    Heo, Seungryong
    Kim, Jong Yun
    Lee, Sun Young
    Nam, Mikyung
    Joo, Keehyoung
    Lee, In-Ho
    Lee, Sung Jong
    Lee, Jooyoung
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2018, 86 : 122 - 135
  • [10] Automatic structure prediction of oligomeric assemblies using Robetta in CASP12
    Park, Hahnbeom
    Kim, David E.
    Ovchinnikov, Sergey
    Baker, David
    DiMaio, Frank
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2018, 86 : 283 - 291