Interactive volumetric segmentation for textile micro-tomography data using wavelets and nonlocal means

被引:7
|
作者
MacNeil, J. Michael L. [1 ]
Ushizima, Daniela M. [1 ,2 ]
Panerai, Francesco [3 ]
Mansour, Nagi N. [4 ]
Barnard, Harold S. [5 ]
Parkinson, Dilworth Y. [5 ]
机构
[1] Lawrence Berkeley Natl Lab, Computat Res Div, CAMERA, 1 Cyclotron Rd,Bldg 59,Off 3017, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Berkeley Inst Data Sci, Berkeley, CA 94720 USA
[3] NASA, Ames Res Ctr, AMA Inc, Moffett Field, CA 94035 USA
[4] NASA, Ames Res Ctr, Adv Supercomp Div, Moffett Field, CA 94035 USA
[5] LBNL, Adv Light Source, CAMERA, Berkeley, CA USA
关键词
3D image processing; 3D segmentation; 3D woven carbon fiber; composites; machine learning; microCT; neural networks; CONVOLUTIONAL NEURAL-NETWORK; IMAGE; CONDUCTIVITY; FRAMEWORK;
D O I
10.1002/sam.11429
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work addresses segmentation of volumetric images of woven carbon fiber textiles from micro-tomography data. We propose a semi-supervised algorithm to classify carbon fibers that requires sparse input as opposed to completely labeled images. The main contributions are: (a) design of effective discriminative classifiers, for three-dimensional textile samples, trained on wavelet features for segmentation; (b) coupling of previous step with nonlocal means as simple, efficient alternative to the Potts model; and (c) demonstration of reuse of classifier to diverse samples containing similar content. We evaluate our work by curating test sets of voxels in the absence of a complete ground truth mask. The algorithm obtains an average 0.95 F1 score on test sets and average F1 score of 0.93 on new samples. We conclude with discussion of failure cases and propose future directions toward analysis of spatiotemporal high-resolution micro-tomography images.
引用
收藏
页码:338 / 353
页数:16
相关论文
共 50 条
  • [1] BRAIN TUMOR VASCULAR NETWORK SEGMENTATION FROM MICRO-TOMOGRAPHY
    Descombes, Xavier
    Plouraboue, Franck
    El Boustani, Abdelhakim
    Fonta, Caroline
    LeDuc, Geraldine
    Serduc, Raphael
    Weitkamp, Timm
    2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 1113 - 1116
  • [2] A PIXE micro-tomography experiment using MLEM algorithm
    Ng, YK
    Orlic, I
    Liew, SC
    Loh, KK
    Tang, SM
    Osipowicz, T
    Watt, F
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1997, 130 (1-4): : 109 - 112
  • [3] PIXE micro-tomography experiment using MLEM algorithm
    Ng, Y.K.
    Orlic, I.
    Liew, S.C.
    Loh, K.K.
    Tang, S.M.
    Osipowicz, T.
    Watt, F.
    Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 1997, 130 (1-4): : 109 - 112
  • [4] Visualisation and quantification of CV chondrite petrography using micro-tomography
    Hezel, Dominik C.
    Elangovan, Premkumar
    Viehmann, Sebastian
    Howard, Lauren
    Abel, Richard L.
    Armstrong, Robin
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2013, 116 : 33 - 40
  • [5] Visualization of fluid occupancy in a rough fracture using micro-tomography
    Karpyn, Z. T.
    Grader, A. S.
    Halleck, P. M.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2007, 307 (01) : 181 - 187
  • [6] Automatic Detection of Rotational Centers Using GPU from Projection Data for micro-tomography in Synchrotron Radiation
    Pan, Yongsheng
    De Carlo, Francesco
    Xiao, Xianghui
    MEDICAL IMAGING 2012: PHYSICS OF MEDICAL IMAGING, 2012, 8313
  • [7] Statistical segmentation and porosity quantification of 3D X-ray micro-tomography
    Ushizima, Daniela
    Parkinson, Dilworth
    Nico, Peter
    Ajo-Franklin, Jonathan
    Macdowell, Alastair
    Kocar, Benjamin
    Bethel, Wes
    Sethian, James
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XXXIV, 2011, 8135
  • [8] Spectroscopic micro-tomography of metallic-organic composites by means of photon-counting detectors
    Pichotka, M.
    Jakubek, J.
    Vavrik, D.
    JOURNAL OF INSTRUMENTATION, 2015, 10
  • [9] An active learning approach for the interactive and guided segmentation of tomography data
    Kazimi, Bashir
    Heuser, Philipp
    Schluenzen, Frank
    Cwieka, Hanna
    Krueger, Diana
    Zeller-Plumhoff, Berit
    Wieland, Florian
    Hammel, Joerg U.
    Beckmann, Felix
    Moosmann, Julian
    DEVELOPMENTS IN X-RAY TOMOGRAPHY XIV, 2022, 12242
  • [10] Determination of water flow through clayey slurries using computed micro-tomography
    Ito, Maki
    Azam, Shahid
    QUARTERLY JOURNAL OF ENGINEERING GEOLOGY AND HYDROGEOLOGY, 2018, 51 (01) : 49 - 62