A survey of state-of-the-art on visual SLAM

被引:92
|
作者
Kazerouni, Iman Abaspur [1 ,2 ]
Fitzgerald, Luke [2 ]
Dooly, Gerard [2 ]
Toal, Daniel [2 ]
机构
[1] Univ Limerick, CONFIRM Ctr SMART Mfg, Limerick V94 C928, Ireland
[2] Univ Limerick, Ctr Robot & Intelligent Syst, Dept Elect & Comp Engn, Limerick V94 T9PX, Ireland
基金
爱尔兰科学基金会;
关键词
SLAM; Feature matching; Sensors; Robot; Deep learning; SIMULTANEOUS LOCALIZATION; PARTICLE FILTER; LOOP CLOSURE; FAB-MAP; ODOMETRY; FEATURES; VISION; MODEL; SCALE;
D O I
10.1016/j.eswa.2022.117734
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper is an overview to Visual Simultaneous Localization and Mapping (V-SLAM). We discuss the basic definitions in the SLAM and vision system fields and provide a review of the state-of-the-art methods utilized for mobile robot's vision and SLAM. This paper covers topics from the basic SLAM methods, vision sensors, machine vision algorithms for feature extraction and matching, Deep Learning (DL) methods and datasets for Visual Odometry (VO) and Loop Closure (LC) in V-SLAM applications. Several feature extraction and matching algorithms are simulated to show a better vision of feature-based techniques.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Deep Learning for Visual SLAM: The State-of-the-Art and Future Trends
    Favorskaya, Margarita N.
    [J]. ELECTRONICS, 2023, 12 (09)
  • [2] A State-of-the-Art Review on SLAM
    Zhou, Xuewei
    Huang, Ruining
    [J]. INTELLIGENT ROBOTICS AND APPLICATIONS (ICIRA 2022), PT III, 2022, 13457 : 240 - 251
  • [3] Visual Writing at the State-of-the-Art?
    Gros, Jochen
    [J]. DESIGN, USER EXPERIENCE, AND USABILITY: UX RESEARCH AND DESIGN, DUXU 2021, PT I, 2021, 12779 : 385 - 400
  • [4] Qualitative evaluation of state-of-the-art DSO and ORB-SLAM-based monocular visual SLAM algorithms for underwater applications
    Drupt, Juliette
    Dune, Claire
    Comport, Andrew I.
    Hugel, Vincent
    [J]. OCEANS 2023 - LIMERICK, 2023,
  • [5] AutoML: A survey of the state-of-the-art
    He, Xin
    Zhao, Kaiyong
    Chu, Xiaowen
    [J]. KNOWLEDGE-BASED SYSTEMS, 2021, 212
  • [6] State-of-the-Art in Visual Attention Modeling
    Borji, Ali
    Itti, Laurent
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (01) : 185 - 207
  • [7] The State-of-the-Art in Predictive Visual Analytics
    Lu, Yafeng
    Garcia, Rolando
    Hansen, Brett
    Gleicher, Michael
    Maciejewski, Ross
    [J]. COMPUTER GRAPHICS FORUM, 2017, 36 (03) : 539 - 562
  • [8] The State-of-the-Art in Visual Object Tracking
    Jalal, Anand Singh
    Singh, Vrijendra
    [J]. INFORMATICA-JOURNAL OF COMPUTING AND INFORMATICS, 2012, 36 (03): : 227 - 248
  • [9] A Survey of Visual Analytics Techniques and Applications: State-of-the-Art Research and Future Challenges
    Sun, Guo-Dao
    Wu, Ying-Cai
    Liang, Rong-Hua
    Liu, Shi-Xia
    [J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2013, 28 (05): : 852 - 867
  • [10] A Survey of Visual Analytics Techniques and Applications: State-of-the-Art Research and Future Challenges
    孙国道
    巫英才
    梁荣华
    刘世霞
    [J]. Journal of Computer Science & Technology, 2013, 28 (05) : 852 - 867