WELL-POSEDNESS OF A CROSS-DIFFUSION POPULATION MODEL WITH NONLOCAL DIFFUSION

被引:6
|
作者
Galiano, Gonzalo [1 ]
Velasco, Julian [1 ]
机构
[1] Univ Oviedo, Dept Math, Oviedo, Spain
关键词
nonlocal diffusion; cross-diffusion; evolution problem; existence of solutions; uniqueness of solution; Shigesada-Kawasaki-Teramoto population model; ENTROPY; SYSTEM;
D O I
10.1137/18M1229249
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence and uniqueness of a solution of a nonlocal cross-diffusion competitive population model for two species. The model may be considered as a version, or even an approximation, of the paradigmatic Shigesada-Kawasaki-Teramoto cross-diffusion model, in which the usual diffusion differential operator is replaced by an integral diffusion operator. The proof of existence of solutions is based on a compactness argument, while the uniqueness of the solution is achieved through a duality technique.
引用
收藏
页码:2884 / 2902
页数:19
相关论文
共 50 条
  • [1] WELL-POSEDNESS OF A CHEMOTAXIS MODEL WITH POSITIVE AND NEGATIVE CROSS-DIFFUSION
    Marinoschi, Gabriela
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (01): : 62 - 77
  • [2] A well-posedness result for a system of cross-diffusion equations
    Christian Seis
    Dominik Winkler
    Journal of Evolution Equations, 2021, 21 : 2471 - 2489
  • [3] A well-posedness result for a system of cross-diffusion equations
    Seis, Christian
    Winkler, Dominik
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (02) : 2471 - 2489
  • [4] Well-posedness of an evolution problem with nonlocal diffusion
    Galiano, Gonzalo
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 45 : 170 - 185
  • [5] Global well-posedness and long-time behavior in a tumor invasion model with cross-diffusion
    Jin, Chunhua
    STUDIES IN APPLIED MATHEMATICS, 2024, 152 (04) : 1133 - 1176
  • [6] Well posedness of general cross-diffusion systems
    Choquet, Catherine
    Rosier, Carole
    Rosier, Lionel
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 300 : 386 - 425
  • [7] Global well-posedness for the diffusion equation of population genetics
    Yang, Ge
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 415 (02) : 760 - 778
  • [8] Well-posedness for a nonlocal nonlinear diffusion equation and applications to inverse problems
    Jing, Xiaohua
    Jia, Junxiong
    Peng, Jigen
    APPLICABLE ANALYSIS, 2020, 99 (15) : 2607 - 2621
  • [9] GLOBAL WELL-POSEDNESS OF A CONSERVATIVE RELAXED CROSS DIFFUSION SYSTEM
    Lepoutre, Thomas
    Pierre, Michel
    Rolland, Guillaume
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (03) : 1674 - 1693
  • [10] ZOOLOGY OF A NONLOCAL CROSS-DIFFUSION MODEL FOR TWO SPECIES
    Carrillo, Jose A.
    Huang, Yanghong
    Schmidtchen, Markus
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2018, 78 (02) : 1078 - 1104