Simulation of semiconductor nanostructures

被引:0
|
作者
Puzder, A [1 ]
Williamson, AJ [1 ]
Grossman, JC [1 ]
Galli, G [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
来源
PHYSICA STATUS SOLIDI B-BASIC RESEARCH | 2002年 / 233卷 / 01期
关键词
D O I
10.1002/1521-3951(200209)233:1<39::AID-PSSB39>3.0.CO;2-A
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We employ density functional and quantum Monte Carlo calculations to show that significant changes occur in the optical gap of fully hydrogenated nanoclusters when the surface contains impurity passivants such as atomic oxygen. Our results show that quantum confinement is only one mechanism responsible for visible photoluminescence in silicon nanoclusters and that the specific surface chemistry must be taken into account in order to interpret experimental results. In the case of oxygen, the gap reduction computed as a function of the nanocluster size provides a consistent interpretation of several recent experiments. Furthermore, we predict that other double bonded groups also significantly affect the optical gap while single bonded groups have a minimal influence.
引用
收藏
页码:39 / 48
页数:10
相关论文
共 50 条
  • [1] Simulation of the electronic and optical properties of semiconductor nanostructures.
    Benedict, L
    Grossman, JG
    Puzder, A
    Williamson, A
    Galli, G
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 222 : U19 - U19
  • [2] Atomistic simulation of semiconductor nanostructures by O(N) TBMD method
    Masuda-Jindo, K
    Menon, M
    Subbaswamy, KR
    Kikuchi, R
    [J]. ADVANCED LUMINESCENT MATERIALS AND QUANTUM CONFINEMENT, 1999, 99 (22): : 266 - 280
  • [3] Particle Monte Carlo simulation of quantum phenomena in semiconductor nanostructures
    Tsuchiya, H
    Ravaioli, U
    [J]. JOURNAL OF APPLIED PHYSICS, 2001, 89 (07) : 4023 - 4029
  • [4] Semiconductor nanostructures
    Di Carlo, A
    [J]. PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 2000, 217 (01): : 703 - 722
  • [5] Semiconductor nanostructures
    不详
    [J]. ADVANCED MATERIALS, 2001, 13 (12-13) : 858 - 858
  • [6] Model simulation of excitons in semiconductor nanostructures at high concentration and strong disorder
    Desforges, J
    Singh, MR
    [J]. SOLID STATE COMMUNICATIONS, 2001, 119 (01) : 45 - 49
  • [7] Full Band Monte Carlo Simulation of Phonon Transport in Semiconductor Nanostructures
    Aksamija, Z.
    [J]. 2014 IEEE 14TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2014, : 37 - 40
  • [8] Defects in semiconductor nanostructures
    Singh, Vijay A.
    Harbola, Manoj K.
    Pathak, Praveen
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2008, 70 (02): : 255 - 261
  • [9] Nanostructures and semiconductor electronics
    Luth, H
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 1995, 192 (02): : 287 - 299
  • [10] Advanced semiconductor nanostructures
    Vayssieres, Lionel
    [J]. COMPTES RENDUS CHIMIE, 2006, 9 (5-6) : 691 - 701