A finite-strain elastoplasticity material model for ETFE membrane structures

被引:6
|
作者
Coelho, Marianna [1 ]
Roehl, Deane [2 ,3 ]
机构
[1] Univ Estado Santa Catarina, Dept Engn Civil, Rua Paulo Malschitzki, BR-89219710 Joinville, SC, Brazil
[2] Pontificia Univ Catolica Rio de Janeiro, Inst Tecgraf, Rio De Janeiro, RJ, Brazil
[3] Pontificia Univ Catolica Rio de Janeiro, Dept Engn Civil, Rio De Janeiro, RJ, Brazil
关键词
Inflated membranes; Membrane materials; Finite-element method; ETFE; LOGARITHMIC STRAIN; STRESS;
D O I
10.1016/j.compstruc.2019.03.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work presents a numerical model for the simulation of the behavior of membrane structures fabricated using ethylene tetrafluoroethylene (ETFE) materials. The elastoplastic material model with von Mises yield criteria is considered in the numerical analysis. Small strain and large strain formulation were adopted for comparison. The model simulates material tests, uniaxial and biaxial, and a burst test, for which experimental measurements are available. The use of von Mises yield criteria is suggested for ETFE foils. The results obtained with the numerical analysis with large strains are in accordance with the experimental results. On the other hand, the results of the numerical analysis with small strains are valid only in the first few steps of the analysis. These results reinforce the importance of considering a material model with large strains to model this type of material. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:36 / 44
页数:9
相关论文
共 50 条
  • [1] A model for the evolution of laminates in finite-strain elastoplasticity
    Hackl, Klaus
    Heinz, Sebastian
    Mielke, Alexander
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2012, 92 (11-12): : 888 - 909
  • [2] An alternative neo-Hookean material model with internal damping for finite-strain elastoplasticity
    Jerabek, Robert
    Ecsi, Ladislav
    EXPERIMENTAL STRESS ANALYSIS (EAN 2019), 2019, : 160 - 168
  • [3] Analytical and numerical methods for finite-strain elastoplasticity
    Gürses, Ercan
    Mainik, Andreas
    Miehe, Christian
    Mielke, Alexander
    Lecture Notes in Applied and Computational Mechanics, 2006, 2006 (28): : 491 - 529
  • [4] Lower semicontinuity and existence of minimizers in incremental finite-strain elastoplasticity
    Mielke, A
    Müller, S
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2006, 86 (03): : 233 - 250
  • [5] Homogenization of high-contrast media in finite-strain elastoplasticity
    Davoli, Elisa
    Gavioli, Chiara
    Pagliari, Valerio
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2025, 81
  • [6] ANALYSIS OF CRACKED MODEL UNDER FINITE-STRAIN ELASTOPLASTICITY USING PARTITIONED COUPLING METHOD
    Yusa, Yasunori
    Yoshimura, Shinobu
    11TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS; 5TH EUROPEAN CONFERENCE ON COMPUTATIONAL MECHANICS; 6TH EUROPEAN CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS, VOLS II - IV, 2014, : 3988 - 3996
  • [7] On microstructures occuring in a model of finite-strain elastoplasticity involving a single slip-system.
    Carstensen, C
    Hackl, K
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2000, 80 : S421 - S422
  • [8] DEFORMED LINEATIONS AS FINITE-STRAIN STRUCTURES
    LISLE, RJ
    TECTONOPHYSICS, 1974, 21 (1-2) : 165 - 179
  • [9] Material formulation of finite-strain thermoelasticity and applications
    Maugin, GA
    Berezovski, A
    JOURNAL OF THERMAL STRESSES, 1999, 22 (4-5) : 421 - 449
  • [10] Material formulation of finite-strain thermoelasticity and applications
    Univ. Pierre et Marie Curie, Lab. de Modelisation en Mecanique, Paris Cedex, France
    不详
    J Therm Stresses, 4 (421-449):