Interface-engineered hematite nanocones as binder-free electrodes for high-performance lithium-ion batteries (vol 6, pg 13968, 2018)

被引:0
|
作者
Wang, Lei [1 ]
Liang, Kun [2 ]
Wang, Guanzhi [2 ]
Yang, Yang [2 ]
机构
[1] Chinese Acad Sci, Lanzhou Inst Chem Phys, Natl Engn Res Ctr Fine Petrochem Intermediates, State Key Lab Oxo Synth & Select Oxidat, Lanzhou 730000, Gansu, Peoples R China
[2] Univ Cent Florida, Dept Mat Sci & Engn, NanoSci Technol Ctr, 4000 Cent Florida Blvd, Orlando, FL 32816 USA
基金
美国国家科学基金会;
关键词
D O I
10.1039/c8ta90157k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hematite (-Fe2O3) has been regarded as a promising anode material for lithium-ion batteries (LIBs) due to its high theoretical capacity, natural abundance, and environmental friendliness. However, there is no effective method to overcome the poor conductivity and cycling stability. In this work, novel one-dimensional -Fe2O3 nanocone arrays (NCs) were prepared by facile two-step thermal oxidation and reduction in an inert atmosphere. The -Fe2O3 NCs exhibited an enhanced electrochemical performance, including high specific capacity (968 mA h g(-1) and 3872 mA h cm(-3)) and excellent cyclability (86% retention after 1000 cycles), which are much better than those of the state-of-the-art -Fe2O3 anodes.
引用
收藏
页码:13975 / 13976
页数:2
相关论文
共 50 条
  • [1] Flexible and Binder-Free Organic Cathode for High-Performance Lithium-Ion Batteries
    Wu, Haiping
    Shevlin, Stephen A.
    Meng, Qinghai
    Guo, Wei
    Meng, Yuena
    Lu, Kun
    Wei, Zhixiang
    Guo, Zhengxiao
    ADVANCED MATERIALS, 2014, 26 (20) : 3338 - +
  • [2] Advanced Matrixes for Binder-Free Nanostructured Electrodes in Lithium-Ion Batteries
    Zhang, Lihan
    Qin, Xianying
    Zhao, Shiqiang
    Wang, Aurelia
    Luo, Jun
    Wang, Zhong Lin
    Kang, Feiyu
    Lin, Zhiqun
    Li, Baohua
    ADVANCED MATERIALS, 2020, 32 (24)
  • [3] A Conductive Binder for High-Performance Sn Electrodes in Lithium-Ion Batteries
    Zhao, Yan
    Yang, Luyi
    Liu, Dong
    Hu, Jiangtao
    Han, Lei
    Wang, Zijian
    Pan, Feng
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (02) : 1672 - 1677
  • [4] Nanosized CoO Loaded on Copper Foam for High-Performance, Binder-Free Lithium-Ion Batteries
    Liao, Mingna
    Zhang, Qilun
    Tang, Fengling
    Xu, Zhiwei
    Zhou, Xin
    Li, Youpeng
    Zhang, Yali
    Yang, Chenghao
    Ru, Qiang
    Zhao, Lingzhi
    NANOMATERIALS, 2018, 8 (04):
  • [5] Study of Microstructure Change of Carbon Nanofibers as Binder-Free Anode for High-Performance Lithium-Ion Batteries
    Wang, Ting
    Shi, Shaojun
    Li, Yuhong
    Zhao, Mengxi
    Chang, Xiaofeng
    Wu, Di
    Wang, Haiying
    Peng, Luming
    Wang, Peng
    Yang, Gang
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (48) : 33091 - 33101
  • [6] Binder-free silicon anodes wrapped in multiple graphene shells for high-performance lithium-ion batteries
    Kim, So Yeun
    Kim, Chang Hyo
    Yang, Cheol-Min
    JOURNAL OF POWER SOURCES, 2021, 486
  • [7] Facile fabrication of binder-free NiO electrodes with high rate capacity for lithium-ion batteries
    Gu, Lili
    Xie, Wenhe
    Bai, Shuai
    Liu, Boli
    Xue, Song
    Li, Qun
    He, Deyan
    APPLIED SURFACE SCIENCE, 2016, 368 : 298 - 302
  • [8] Compressible graphene aerogel supported CoO nanostructures as a binder-free electrode for high-performance lithium-ion batteries
    Dong, Yanfeng
    Liu, Shaohong
    Wang, Zhiyu
    Liu, Yang
    Zhao, Zongbin
    Qiu, Jieshan
    RSC ADVANCES, 2015, 5 (12): : 8929 - 8932
  • [9] Uniquely Arranged Graphene-on-Graphene Structure as a Binder-Free Anode for High-Performance Lithium-Ion Batteries
    Ye, Minghui
    Dong, Zelin
    Hu, Chuangang
    Cheng, Huhu
    Shao, Huibo
    Chen, Nan
    Qu, Liangti
    SMALL, 2014, 10 (24) : 5035 - 5041
  • [10] Fabrication of Current Collectors and Binder-Free Electrodes on Separators Used in Lithium-Ion Batteries
    Delaporte, Nicolas
    Ossonon, Diby B.
    Zaghib, Karim
    Belanger, Daniel
    BATTERIES & SUPERCAPS, 2020, 3 (07) : 638 - 646