Rejoinder of "High-dimensional autocovariance matrices and optimal linear prediction"

被引:1
|
作者
McMurry, Timothy L. [1 ]
Politis, Dimitris N. [2 ]
机构
[1] Univ Virginia, Dept Publ Hlth Sci, Charlottesville, VA 22908 USA
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
来源
ELECTRONIC JOURNAL OF STATISTICS | 2015年 / 9卷 / 01期
基金
美国国家科学基金会;
关键词
Autocovariance matrix; Prediction; Spectral density; Time series;
D O I
10.1214/15-EJS1000REJ
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A new methodology for optimal linear prediction of a stationary time series is introduced. Given a sample Xi,, the optimal linear predictor of Xn+1 is (X) over tilde (n+1) = phi(1)(n)X-n + phi(2)(n)Xn-1+...+phi(n)(n)X-1. In practice, the coefficient vector phi(n) equivalent to (phi(1)(n), phi(2)(n), ..., phi(n)(n))' is routinely truncated to its first p components in order to be consistently estimated. By contrast, we employ a consistent estimator of the n x n auto-covariance matrix Gamma(n) in order to construct a consistent estimator of the optimal, full-length coefficient vector phi(n). Asymptotic convergence of the proposed predictor to the oracle is established, and finite sample simulations are provided to support the applicability of the new method. As a by-product, new insights are gained on the subject of estimating Gamma(n) via a positive definite matrix, and four ways to impose positivity are introduced and compared. The closely related problem of spectral density estimation is also addressed.
引用
收藏
页码:811 / 822
页数:12
相关论文
共 50 条
  • [1] Discussion of "High-dimensional autocovariance matrices and optimal linear prediction"
    Wu, Wei Biao
    ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (01): : 789 - 791
  • [2] Estimation of autocovariance matrices for high dimensional linear processes
    Konrad Furmańczyk
    Metrika, 2021, 84 : 595 - 613
  • [3] Estimation of autocovariance matrices for high dimensional linear processes
    Furmanczyk, Konrad
    METRIKA, 2021, 84 (04) : 595 - 613
  • [4] A Durbin-Levinson regularized estimator of high-dimensional autocovariance matrices
    Proietti, Tommaso
    Giovannelli, Alessandro
    BIOMETRIKA, 2018, 105 (04) : 783 - 795
  • [5] Spectral measure of empirical autocovariance matrices of high-dimensional Gaussian stationary processes
    Bose, Arup
    Hachem, Walid
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2023, 12 (02)
  • [6] Optimal equivariant prediction for high-dimensional linear models with arbitrary predictor covariance
    Dicker, Lee H.
    ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 1806 - 1834
  • [7] Stable prediction in high-dimensional linear models
    Lin, Bingqing
    Wang, Qihua
    Zhang, Jun
    Pang, Zhen
    STATISTICS AND COMPUTING, 2017, 27 (05) : 1401 - 1412
  • [8] Stable prediction in high-dimensional linear models
    Bingqing Lin
    Qihua Wang
    Jun Zhang
    Zhen Pang
    Statistics and Computing, 2017, 27 : 1401 - 1412
  • [9] ESTIMATION OF AUTOCOVARIANCE MATRICES FOR INFINITE DIMENSIONAL VECTOR LINEAR PROCESS
    Bhattacharjee, Monika
    Bose, Arup
    JOURNAL OF TIME SERIES ANALYSIS, 2014, 35 (03) : 262 - 281
  • [10] Prediction in abundant high-dimensional linear regression
    Cook, R. Dennis
    Forzani, Liliana
    Rothman, Adam J.
    ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 3059 - 3088