A robust segmentation framework for closely packed buildings from airborne LiDAR point clouds

被引:21
|
作者
Wang, Xinsheng [1 ,2 ]
Chan, Ting On [1 ]
Liu, Kai [1 ]
Pan, Jun [2 ]
Luo, Ming [1 ]
Li, Wenkai [1 ]
Wei, Chunzhu [1 ]
机构
[1] Sun Yat Sen Univ, Sch Geog & Planning, Guangdong Prov Key Lab Urbanizat & Geosimulat, Guangzhou, Peoples R China
[2] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan, Peoples R China
关键词
IMAGE-ANALYSIS; EXTRACTION; VILLAGES; ROOFS;
D O I
10.1080/01431161.2020.1727053
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Urban villages (UVs) are commonly found in many Asian cities. These villages contain many closely packed buildings constructed decades ago without proper urban planning. There is a need for those buildings to be identified and put into statistics. In this paper, we present a segmentation framework that invokes multiple machine learning techniques and point cloud/image processing algorithms to segment individual closely packed buildings from large urban scenes. The presented framework consists of two major segmentation processes. The framework first filters out the non-ground objects from the point cloud, then it classified them by using the Random Forest classifier to isolate buildings from the entire scene. After that, the building point clouds will be segmented based on several building attribute analysis methods. This is followed by using the Random Sample Consensus (RANSAC) plane filtering method to expand the space between two closely packed buildings, so that the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering technique can be used to more accurately segment each individual building from the closely packed building areas. Two airborne Light Detection and Ranging (LiDAR) datasets collected in two different cities with some typical closely packed buildings were used to verify the proposed framework. The results show that the framework can effectively identify the closely packed buildings with unified structures from large airborne LiDAR datasets. The overall segmentation accuracy reaches 84% for the two datasets. The proposed framework can serve as a basis for analysis and segmentation of closely packed buildings with a more complicated structure.
引用
收藏
页码:5147 / 5165
页数:19
相关论文
共 50 条
  • [1] Object Segmentation of Cluttered Airborne LiDAR Point Clouds
    Caros, Mariona
    Just, Ariadna
    Segui, Santi
    Vitria, Jordi
    ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2022, 356 : 259 - 268
  • [2] A new approach for roof segmentation from airborne LiDAR point clouds
    Zhao, Chuan
    Guo, Haitao
    Lu, Jun
    Yu, Donghang
    Zhou, Xin
    Lin, Yuzhun
    REMOTE SENSING LETTERS, 2021, 12 (04) : 377 - 386
  • [3] Urban building roof segmentation from airborne lidar point clouds
    Chen, Dong
    Zhang, Liqiang
    Li, Jonathan
    Liu, Rei
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2012, 33 (20) : 6497 - 6515
  • [4] Point2Building: Reconstructing buildings from airborne LiDAR point clouds
    Liu, Yujia
    Obukhov, Anton
    Wegner, Jan Dirk
    Schindler, Konrad
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2024, 215 : 351 - 368
  • [5] A Density-Based Clustering Method for the Segmentation of Individual Buildings from Filtered Airborne LiDAR Point Clouds
    Xiaoping Huang
    Rujun Cao
    Yanyan Cao
    Journal of the Indian Society of Remote Sensing, 2019, 47 : 907 - 921
  • [6] A Density-Based Clustering Method for the Segmentation of Individual Buildings from Filtered Airborne LiDAR Point Clouds
    Huang, Xiaoping
    Cao, Rujun
    Cao, Yanyan
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2019, 47 (06) : 907 - 921
  • [7] A global optimization approach to roof segmentation from airborne lidar point clouds
    Yan, Jixing
    Shan, Jie
    Jiang, Wanshou
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 94 : 183 - 193
  • [8] Semantic Segmentation of Airborne LiDAR Point Clouds With Noisy Labels
    Gao, Yuan
    Xia, Shaobo
    Wang, Cheng
    Xi, Xiaohuan
    Yang, Bisheng
    Xie, Chou
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [9] A fast and robust interpolation filter for airborne lidar point clouds
    Chen, Chuanfa
    Li, Yanyan
    Zhao, Na
    Guo, Jinyun
    Liu, Guolin
    PLOS ONE, 2017, 12 (05):
  • [10] Segmentation of building roofs from airborne LiDAR point clouds using robust voxel-based region growing
    Xu, Yusheng
    Yao, Wei
    Hoegner, Ludwig
    Stilla, Uwe
    REMOTE SENSING LETTERS, 2017, 8 (11) : 1062 - 1071