Non-asymptotic error bounds for constant stepsize stochastic approximation for tracking mobile agents

被引:2
|
作者
Kumar, Bhumesh [1 ,2 ]
Borkar, Vivek [1 ]
Shetty, Akhil [1 ,3 ]
机构
[1] Indian Inst Technol, Dept Elect Engn, Mumbai 400076, Maharashtra, India
[2] Univ Wisconsin, Dept Elect & Comp Engn, 1415 Johnson Dr, Madison, WI 53706 USA
[3] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Cory Hall,Hearst Ave, Berkeley, CA 94720 USA
关键词
Stochastic approximation; Constant stepsize; Non-asymptotic bound; Alekseev's formula; Martingale concentration inequalities; Perturbation analysis; Non-stationary optimization; EXPONENTIAL STABILITY; ASYMPTOTIC ANALYSIS; ALGORITHMS; SYSTEMS; CONVERGENCE; SIZE;
D O I
10.1007/s00498-019-00249-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work revisits the constant stepsize stochastic approximation algorithm for tracking a slowly moving target and obtains a bound for the tracking error that is valid for the entire time axis, using the Alekseev nonlinear variation of constants formula. It is the first non-asymptotic bound for the entire time axis in the sense that it is not based on the vanishing stepsize limit and associated limit theorems unlike prior works, and captures clearly the dependence on problem parameters and the dimension.
引用
收藏
页码:589 / 614
页数:26
相关论文
共 50 条
  • [1] Non-asymptotic error bounds for constant stepsize stochastic approximation for tracking mobile agents
    Bhumesh Kumar
    Vivek Borkar
    Akhil Shetty
    Mathematics of Control, Signals, and Systems, 2019, 31 : 589 - 614
  • [2] Non-asymptotic bounds for autoregressive approximation
    Goldenshluger, A
    Zeevi, A
    1998 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 1998, : 304 - 304
  • [3] Non-Asymptotic Error Bounds for Bidirectional GANs
    Liu, Shiao
    Yang, Yunfei
    Huang, Jian
    Jiao, Yuling
    Wang, Yang
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [4] Non-asymptotic Analysis of Biased Stochastic Approximation Scheme
    Karimi, Belhal
    Miasojedow, Blazej
    Moulines, Eric
    Wai, Hoi-To
    CONFERENCE ON LEARNING THEORY, VOL 99, 2019, 99
  • [5] Non-asymptotic confidence bounds for the optimal value of a stochastic program
    Guigues, Vincent
    Juditsky, Anatoli
    Nemirovski, Arkadi
    OPTIMIZATION METHODS & SOFTWARE, 2017, 32 (05): : 1033 - 1058
  • [6] Sample average approximation with heavier tails I: non-asymptotic bounds with weak assumptions and stochastic constraints
    Roberto I. Oliveira
    Philip Thompson
    Mathematical Programming, 2023, 199 : 1 - 48
  • [7] Sample average approximation with heavier tails I: non-asymptotic bounds with weak assumptions and stochastic constraints
    Oliveira, Roberto, I
    Thompson, Philip
    MATHEMATICAL PROGRAMMING, 2023, 199 (1-2) : 1 - 48
  • [8] Non-Asymptotic Analysis of Stochastic Approximation Algorithms for Streaming Data
    Godichon-Baggioni, Antoine
    Werge, Nicklas
    Wintenberger, Olivier
    ESAIM-PROBABILITY AND STATISTICS, 2023, 27 : 482 - 514
  • [9] Non-asymptotic convergence bounds for Wasserstein approximation using point clouds
    Merigot, Quentin
    Santambrogio, Filippo
    Sarrazin, Clement
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [10] Non-asymptotic sub-Gaussian error bounds for hypothesis testing
    Li, Yanpeng
    Tian, Boping
    STATISTICS & PROBABILITY LETTERS, 2022, 189