Crucial role of Ni-doping to interfacial Li2MnO3 layer of High-performance Ni-rich layered cathode in Lithium-Ion batteries

被引:29
|
作者
Jeong, Seonghun [1 ,2 ]
Choi, Kwonyoung [3 ]
Ho, Van-Chuong [1 ]
Cho, Jiung [4 ]
Bae, Jong-Seong [5 ]
Nam, Sang Cheol [3 ]
Yim, Taeeun [6 ]
Mun, Junyoung [1 ,7 ]
机构
[1] Incheon Natl Univ, Dept Energy & Chem Engn, 12-1 Songdo Dong, Incheon 22012, South Korea
[2] Seoul Natl Univ, Inst Chem Proc, Sch Chem & Biol Engn, Seoul 08826, South Korea
[3] POSCO Global R&D Ctr, Res Inst Ind Sci & Technol RIST, 100 Songdogwahak Ro, Incheon 21985, South Korea
[4] Korea Basic Sci Inst, Western Seoul Ctr, 150 Bugahyeon Ro, Seoul 03759, South Korea
[5] Korea Basic Sci Inst KBSI, Busan Ctr, 30,Gwahaksandan 1 Ro 60Beon Gil, Busan 46742, South Korea
[6] Incheon Natl Univ, Dept Chem, 12-1 Songdo Dong, Incheon 22012, South Korea
[7] Sungkyunkwan Univ, Sch Adv Mat Sci & Engn, Seoul 25115, Gyeonggi Do, South Korea
关键词
Ni-rich cathode; Washing; Lithium-ion battery; Ni doped Li2MnO3 coating; THERMAL-STABILITY; ELECTROCHEMICAL PROPERTIES; SURFACE MODIFICATION; LICOO2; MN;
D O I
10.1016/j.cej.2022.134577
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The surface instability of Ni3+ in Ni-rich layered oxide cathode materials is recognized as an obstacle in high-energy-density lithium-ion batteries. Researchers have previously attempted to solve this issue using a protective layer with a stable substance. Despite the popularity Ni-rich layered oxides, their exceptionally unstable surface has not been investigated comprehensively. Ni-rich layered oxides include lithium impurities and have a fragile surface, forming a NiO bi-phase. In this study, we perform Li2MnO3 coating to enable Ni doping via simple stirring and heat treatment combined, while considering the surface states of Ni-rich layered oxide, where lithium impurities are inevitable and a NiO bi-phase may exist. It is discovered that the tailoring interface consuming surface NiO is critical for mitigating the surface resistance. Among the samples with Li2MnO3 coating, only the sample prepared via 800 ?degrees C heating indicates the presence of Ni-doped Li2MnO3 based on electrochemical de-lithiation at 4.65 V vs. Li/Li+. It is effective in reducing NiO and stabilizing the surface for a high cycle life of 88.3% at the 100th cycle and a high rate capability of 76.9% at 5C, whereas a Li2MnO3-coated sample exhibits a cycle life of 70.4% at the 100th cycle and a rate capability of 29.1% at 5C. The surface is investigated via X-ray photoelectron spectroscopy, scanning transmission electron microscopy, and time-of-flight secondary ion mass spectroscopy analyses.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Effects of Li2MnO3 coating on the high-voltage electrochemical performance and stability of Ni-rich layer cathode materials for lithium-ion batteries
    Zhang, Honglong
    Li, Bing
    Wang, Jing
    Wu, Bihe
    Fu, Tao
    Zhao, Jinbao
    RSC ADVANCES, 2016, 6 (27): : 22625 - 22632
  • [2] Doping Strategy in Developing Ni-Rich Cathodes for High-Performance Lithium-Ion Batteries
    Lee, Soo-Been
    Park, Nam-Yung
    Park, Geon-Tae
    Kim, Un-Hyuck
    Sohn, Sung-June
    Kang, Min-Seok
    Ribas, Rogerio M.
    Monteiro, Robson S.
    Sun, Yang-Kook
    ACS ENERGY LETTERS, 2024, 9 (02) : 740 - 747
  • [3] Quaternary Layered Ni-Rich NCMA Cathode for Lithium-Ion Batteries
    Kim, Un-Hyuck
    Kuo, Liang-Yin
    Kaghazchi, Payam
    Yoon, Chong S.
    Sun, Yang-Kook
    ACS ENERGY LETTERS, 2019, 4 (02) : 576 - 582
  • [4] Revisiting the role of Zr doping in Ni-rich layered cathodes for lithium-ion batteries
    Jung, Chul-Ho
    Li, Qingtian
    Kim, Do-Hoon
    Eum, Donggun
    Ko, Donghyun
    Choi, Jonghyun
    Lee, Jongwon
    Kim, Kyeong-Ho
    Kang, Kisuk
    Yang, Wanli
    Hong, Seong-Hyeon
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (32) : 17415 - 17424
  • [5] A nanorod-like Ni-rich layered cathode with enhanced Li+ diffusion pathways for high-performance lithium-ion batteries
    Li, Fangkun
    Liu, Zhengbo
    Shen, Jiadong
    Xu, Xijun
    Zeng, Liyan
    Zhang, Binghao
    Zhu, He
    Liu, Qi
    Liu, Jun
    Zhu, Min
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (05) : 2830 - 2839
  • [6] Role of polyvinylpyrrolidone in the electrochemical performance of Li2MnO3 cathode for lithium-ion batteries
    Lee, Ji-Eun
    Kim, Min-Cheol
    Moon, Sang-Hyun
    Kim, Eun-Soo
    Shin, Yeon-Kyung
    Choi, Sojeong
    Kwon, Suk-Hui
    Kim, Si-Jin
    Kwon, Hye-Jin
    Park, Kyung-Won
    RSC ADVANCES, 2019, 9 (18) : 10297 - 10304
  • [7] Hydrophobic Ni-Rich Layered Oxides as Cathode Materials for Lithium-Ion Batteries
    Doo, Sung Wook
    Lee, Suyeon
    Kim, Hanseul
    Choi, Jin H.
    Lee, Kyu Tae
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (09) : 6246 - 6253
  • [8] Stabilizing reaction interface in Ni-rich layered oxides cathode for high-performance lithium-ion batteries at a high cutoff voltage
    Li, Yu
    Cui, Lisan
    Tan, Chunlei
    Fan, Xiaoping
    Pan, Qichang
    Chu, Youqi
    Hu, Sijiang
    Zheng, Fenghua
    Wang, Hongqiang
    Li, Qingyu
    CHEMICAL ENGINEERING JOURNAL, 2022, 430
  • [9] Incorporation of Titanium into Ni-Rich Layered Cathode Materials for Lithium-Ion Batteries
    Kim, Jong Hwa
    Kim, Hyuntae
    Kim, Won-Joo
    Kim, Yong-Chan
    Jung, Jae Yup
    Rhee, Dong Young
    Song, Jun Ho
    Cho, Woosuk
    Park, Min-Sik
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (12) : 12204 - 12211
  • [10] Stabilizing reaction interface in Ni-rich layered oxides cathode for high-performance lithium-ion batteries at a high cutoff voltage
    Li, Yu
    Cui, Lisan
    Tan, Chunlei
    Fan, Xiaoping
    Pan, Qichang
    Chu, Youqi
    Hu, Sijiang
    Zheng, Fenghua
    Wang, Hongqiang
    Li, Qingyu
    Chemical Engineering Journal, 2022, 430