The strong law of large numbers for sums of randomly chosen random variables (vol 61, pg 741, 2021)

被引:0
|
作者
Gdula, Agnieszka M.
Krajka, Andrzej
机构
[1] Maria-Curie Skłodowska University, ul. Akademicka 9, Lublin
关键词
random sets; randomly indexed sums; strong law of large numbers;
D O I
10.1007/s10986-021-09544-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {Xn,n ≥ 1} be a sequence of independent or identically distributed dependent random variables, and let {An,n ≥ 1} be a sequence of random subsets of natural numbers independent of {Xn, n ≥ 1}. In this paper, we describe the strong law of large numbers (SLLN) of the form ∑i∈An(Xi−E∑i∈AnXi)/bn→0a.s. as n → ∞ for some sequence of nondecreasing positive numbers {bn, n ≥ 1}. There often arises an assumption that {An, n ≥ 1} are almost surely increasing: An ⊂ An + 1, a. s n ≥ 1. © 2021, The Author(s).
引用
收藏
页码:564 / 564
页数:1
相关论文
共 50 条