Optimal stopping for non-linear expectations - Part I

被引:30
|
作者
Bayraktar, Erhan [1 ]
Yao, Song [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Nonlinear expectations; Optimal stopping; Snell envelope; Stability; g-expectations; MARTINGALE APPROACH; CONSISTENT;
D O I
10.1016/j.spa.2010.10.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop a theory for solving continuous time optimal stopping problems for non-linear expectations. Our motivation is to consider problems in which the stopper uses risk measures to evaluate future rewards. Our development is presented in two parts. In the first part, we will develop the stochastic analysis tools that will be essential in solving the optimal stopping problems, which will be presented in Bayraktar and Yao (2011) [1] (c) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:185 / 211
页数:27
相关论文
共 50 条
  • [1] On the strict value of the non-linear optimal stopping problem
    Grigorova, Miryana
    Imkeller, Peter
    Ouknine, Youssef
    Quenez, Marie-Claire
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2020, 25 : 1 - 9
  • [2] Numerical methods for optimal stopping using linear and non-linear programming
    Helmes, K
    [J]. STOCHASTIC THEORY AND CONTROL, PROCEEDINGS, 2002, 280 : 185 - 203
  • [3] Optimal stopping: Bermudan strategies meet non-linear evaluations
    Grigorova, Miryana
    Quenez, Marie-Claire
    Yuan, Peng
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
  • [4] Asymptotics of the boundaries in one non-linear optimal stopping problem
    Muravlev, A. A.
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2020, 75 (02) : 380 - 382
  • [5] NON-LINEAR SEMIGROUPS FOR MARKOV-PROCESSES ASSOCIATED WITH OPTIMAL STOPPING
    NISIO, M
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 1978, 4 (02): : 143 - 169
  • [6] Solving non-linear optimal stopping problems by the method of time-change
    Pedersen, JL
    Peskir, G
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2000, 18 (05) : 811 - 835
  • [7] An asymptotic expansion for the optimal stopping boundary in problems with non-linear costs of observation
    Irle, A
    Kubillus, O
    Paulsen, V
    [J]. JOURNAL OF APPLIED PROBABILITY, 2001, 38 (01) : 67 - 79
  • [8] Partially observed non-linear risk-sensitive optimal stopping control for non-linear discrete-time systems
    Ford, Jason J.
    [J]. SYSTEMS & CONTROL LETTERS, 2006, 55 (09) : 770 - 776
  • [9] OPTIMAL NON-LINEAR MODELS
    Aldroubi, Akram
    Cabrelli, Carlos
    Molter, Ursula
    [J]. REVISTA DE LA UNION MATEMATICA ARGENTINA, 2009, 50 (02): : 217 - 225
  • [10] OPTIMAL NON-LINEAR ESTIMATION
    LAINIOTIS, DG
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1971, 14 (06) : 1137 - +