Integrated analysis of a compendium of RNA-Seq datasets for splicing factors

被引:5
|
作者
Yu, Peng [1 ,2 ]
Li, Jin [3 ]
Deng, Su-Ping [4 ]
Zhang, Feiran [5 ]
Grozdanov, Petar N. [6 ]
Chin, Eunice W. M. [7 ]
Martin, Sheree D. [8 ,9 ]
Vergnes, Laurent [10 ]
Islam, M. Saharul [11 ,12 ]
Sun, Deqiang [3 ]
LaSalle, Janine M. [11 ,12 ]
McGee, Sean L. [8 ,9 ]
Goh, Eyleen [7 ]
MacDonald, Clinton C. [6 ]
Jin, Peng [5 ]
机构
[1] Sichuan Univ, West China Hosp, West China Biomed Big Data Ctr, Chengdu, Peoples R China
[2] Sichuan Univ, Med Big Data Ctr, Chengdu, Peoples R China
[3] Texas A&M Univ, Coll Med, Ctr Epigenet & Dis Prevent, Inst Biosci & Technol, Houston, TX 77030 USA
[4] Suzhou Univ Sci & Technol, Sch Elect & Informat Engn, Suzhou 215009, Jiangsu, Peoples R China
[5] Emory Univ, Sch Med, Dept Human Genet, Atlanta, GA USA
[6] Texas Tech Univ, Dept Cell Biol & Biochem, Hlth Sci Ctr, Lubbock, TX 79430 USA
[7] Duke NUS Med Sch, Neurosci Acad Clin Programme, NA, Singapore, Singapore
[8] Deakin Univ, Metab Reprogramming Lab, Metab Res Unit, Sch Med, Geelong, Vic, Australia
[9] Deakin Univ, Ctr Mol & Med Res, Geelong, Vic, Australia
[10] Univ Calif Los Angeles, David Geffen Sch Med, Dept Human Genet, Los Angeles, CA 90095 USA
[11] Univ Calif Davis, Dept Med Microbiol & Immunol, Genome Ctr, Davis, CA 95616 USA
[12] Univ Calif Davis, MIND Inst, Davis, CA 95616 USA
基金
美国国家卫生研究院;
关键词
ARGININE METHYLTRANSFERASE; GENE-EXPRESSION; BROWN; TRANSCRIPTION; DYSFUNCTION; STRESS; MECP2;
D O I
10.1038/s41597-020-0514-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A vast amount of public RNA-sequencing datasets have been generated and used widely to study transcriptome mechanisms. These data offer precious opportunity for advancing biological research in transcriptome studies such as alternative splicing. We report the first large-scale integrated analysis of RNA-Seq data of splicing factors for systematically identifying key factors in diseases and biological processes. We analyzed 1,321 RNA-Seq libraries of various mouse tissues and cell lines, comprising more than 6.6 TB sequences from 75 independent studies that experimentally manipulated 56 splicing factors. Using these data, RNA splicing signatures and gene expression signatures were computed, and signature comparison analysis identified a list of key splicing factors in Rett syndrome and cold-induced thermogenesis. We show that cold-induced RNA-binding proteins rescue the neurite outgrowth defects in Rett syndrome using neuronal morphology analysis, and we also reveal that SRSF1 and PTBP1 are required for energy expenditure in adipocytes using metabolic flux analysis. Our study provides an integrated analysis for identifying key factors in diseases and biological processes and highlights the importance of public data resources for identifying hypotheses for experimental testing.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Integrated analysis of a compendium of RNA-Seq datasets for splicing factors
    Peng Yu
    Jin Li
    Su-Ping Deng
    Feiran Zhang
    Petar N. Grozdanov
    Eunice W. M. Chin
    Sheree D. Martin
    Laurent Vergnes
    M. Saharul Islam
    Deqiang Sun
    Janine M. LaSalle
    Sean L. McGee
    Eyleen Goh
    Clinton C. MacDonald
    Peng Jin
    Scientific Data, 7
  • [2] RNA splicing analysis using heterogeneous and large RNA-seq datasets
    Vaquero-Garcia, Jorge
    Aicher, Joseph K.
    Jewell, San
    Gazzara, Matthew R.
    Radens, Caleb M.
    Jha, Anupama
    Norton, Scott S.
    Lahens, Nicholas F.
    Grant, Gregory R.
    Barash, Yoseph
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [3] RNA splicing analysis using heterogeneous and large RNA-seq datasets
    Jorge Vaquero-Garcia
    Joseph K. Aicher
    San Jewell
    Matthew R. Gazzara
    Caleb M. Radens
    Anupama Jha
    Scott S. Norton
    Nicholas F. Lahens
    Gregory R. Grant
    Yoseph Barash
    Nature Communications, 14
  • [4] Integrative analysis of many RNA-seq datasets to study alternative splicing
    Li, Wenyuan
    Dai, Chao
    Kang, Shuli
    Zhou, Xianghong Jasmine
    METHODS, 2014, 67 (03) : 313 - 324
  • [5] SFMetaDB: a comprehensive annotation of mouse RNA splicing factor RNA-Seq datasets
    Li, Jin
    Tseng, Ching-San
    Federico, Antonio
    Ivankovic, Franjo
    Huang, Yi-Shuian
    Ciccodicola, Alfredo
    Swanson, Maurice S.
    Yu, Peng
    DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2017,
  • [6] Rail-RNA: scalable analysis of RNA-seq splicing and coverage
    Nellore, Abhinav
    Collado-Torres, Leonardo
    Jaffe, Andrew E.
    Alquicira-Hernandez, Jose
    Wilks, Christopher
    Pritt, Jacob
    Morton, James
    Leek, Jeffrey T.
    Langmead, Ben
    BIOINFORMATICS, 2017, 33 (24) : 4033 - 4040
  • [7] SURF: integrative analysis of a compendium of RNA-seq and CLIP-seq datasets highlights complex governing of alternative transcriptional regulation by RNA-binding proteins
    Chen, Fan
    Keles, Sunduz
    GENOME BIOLOGY, 2020, 21 (01)
  • [8] SURF: integrative analysis of a compendium of RNA-seq and CLIP-seq datasets highlights complex governing of alternative transcriptional regulation by RNA-binding proteins
    Fan Chen
    Sündüz Keleş
    Genome Biology, 21
  • [9] Integrated analysis of RNA-seq datasets reveals novel targets and regulators of COVID-19 severity
    Oliveira, Thais Teixeira
    Freitas, Julia Firme
    de Medeiros, Viviane Priscila Barros
    Xavier, Thiago Jesus da Silva
    Agnez-Lima, Lucymara Fassarella
    LIFE SCIENCE ALLIANCE, 2024, 7 (04)
  • [10] Alternative splicing, RNA-seq and drug discovery
    Zhao, Shanrong
    DRUG DISCOVERY TODAY, 2019, 24 (06) : 1258 - 1267