Structure/Interface Coupling Effect for High-Voltage LiCoO2 Cathodes

被引:57
|
作者
Chen, Jun [1 ]
Chen, Hongyi [1 ]
Zhang, Shu [1 ]
Dai, Alvin [2 ]
Li, Tianyi [3 ]
Mei, Yu [1 ]
Ni, Lianshan [1 ]
Gao, Xu [1 ]
Deng, Wentao [1 ]
Yu, Lei [4 ]
Zou, Guoqiang [1 ]
Hou, Hongshuai [1 ]
Dahbi, Mouad [5 ]
Xu, Wenqian [3 ]
Wen, Jianguo [4 ]
Alami, Jones [5 ]
Liu, Tongchao [2 ]
Amine, Khalil [2 ,5 ,6 ]
Ji, Xiaobo [1 ]
机构
[1] Cent South Univ, State Key Lab Powder Met, Coll Chem & Chem Engn, Changsha 410083, Peoples R China
[2] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
[3] Argonne Natl Lab, Adv Photon Sources, Xray Sci Div, Lemont, IL 60439 USA
[4] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
[5] Mohammed VI Polytech Univ UM6P, Mat Sci Energy & Nanoengn Dept, Benguerir 43150, Morocco
[6] Stanford Univ, Mat Sci & Engn, Stanford, CA 94305 USA
基金
中国国家自然科学基金;
关键词
electrochemical performance; high-voltage LiCoO; (2); stability of structure; interface; structure; interface coupling effect;
D O I
10.1002/adma.202204845
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
LiCoO2 (LCO) is widely applied in today's rechargeable battery markets for consumer electronic devices. However, LCO operations at high voltage are hindered by accelerated structure degradation and electrode/electrolyte interface decomposition. To overcome these challenges, co-modified LCO (defined as CB-Mg-LCO) that couples pillar structures with interface shielding are successfully synthesized for achieving high-energy-density and structurally stable cathode material. Benefitting from the "Mg-pillar" effect, irreversible phase transitions are significantly suppressed and highly reversible Li+ shuttling is enabled. Interestingly, bonding effects between the interfacial lattice oxygen of CB-Mg-LCO and amorphous CoxBy coating layer are found to elevate the formation energy of oxygen vacancies, thereby considerably mitigating lattice oxygen loss and inhibiting irreversible phase transformation. Meanwhile, interface shielding effects are also beneficial for mitigating parasitic electrode/electrolyte reactions, subsequent Co dissolution, and ultimately enable a robust electrode/electrolyte interface. As a result, the as-designed CB-Mg-LCO cathode achieves a high capacity and excellent cycle stability with 94.6% capacity retention at an extremely high cut-off voltage of 4.6 V. These findings provide new insights for cathode material modification methods, which serves to guide future cathode material design.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] High-voltage cycling behavior of thin-film LiCoO2 cathodes
    Jang, YI
    Dudney, NJ
    Blom, DA
    Allard, LF
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (11) : A1442 - A1447
  • [2] High-voltage LiCoO2 cathodes for high-energy-density lithiumion battery
    Jing-Chao Zhang
    Zhe-Dong Liu
    Cui-Hua Zeng
    Jia-Wei Luo
    Yi-Da Deng
    Xiao-Ya Cui
    Ya-Nan Chen
    RareMetals, 2022, 41 (12) : 3946 - 3956
  • [3] Al Impurity Upcycled High-Voltage Cathodes from Spent LiCoO2 Batteries
    Zhang, Baichao
    Chen, Shou
    Yang, Lu
    Zhu, Fangjun
    Hu, Xinyu
    Hong, Ningyun
    Wang, Haoji
    Zeng, Jingyao
    Huang, Jiangnan
    Shu, Yumin
    Deng, Wentao
    Zou, Guoqiang
    Hou, Hongshuai
    Silvester, Debbie S.
    Banks, Craig E.
    Ji, Xiaobo
    ACS NANO, 2024, 18 (34) : 23773 - 23784
  • [4] Synergetic Effect of Electrolyte Coadditives for a High-Voltage LiCoO2 Cathode
    Wen, Xinyang
    Chen, Min
    Zhou, Xianggui
    Chen, Shuai
    Huang, Haonan
    Chen, Jiakun
    Ruan, Digen
    Xiang, Wenjin
    Zhang, Gaige
    Li, Weishan
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (01): : 282 - 295
  • [5] High-voltage LiCoO2 cathodes for high-energy-density lithium-ion battery
    Jing-Chao Zhang
    Zhe-Dong Liu
    Cui-Hua Zeng
    Jia-Wei Luo
    Yi-Da Deng
    Xiao-Ya Cui
    Ya-Nan Chen
    Rare Metals, 2022, 41 : 3946 - 3956
  • [6] High-voltage LiCoO2 cathodes for high-energy-density lithium-ion battery
    Zhang, Jing-Chao
    Liu, Zhe-Dong
    Zeng, Cui-Hua
    Luo, Jia-Wei
    Deng, Yi-Da
    Cui, Xiao-Ya
    Chen, Ya-Nan
    RARE METALS, 2022, 41 (12) : 3946 - 3956
  • [7] Li diffusion and high-voltage cycling behavior of thin-film LiCoO2 cathodes
    Jang, YI
    Dudney, NJ
    BATTERIES AND SUPERCAPACITORS, 2003, : 52 - 63
  • [8] In Situ-Constructed Multifunctional Interface for High-Voltage 4.6 V LiCoO2
    Sun, Chao
    Zhao, Bing
    Cui, Ru-de
    Mao, Jing
    Dai, Ke-Hua
    Chen, He-Zhang
    Zhang, Xia-hui
    Zheng, Jun-chao
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (18) : 21982 - 21993
  • [9] Hybrid Surface Modification and Bulk Doping Enable Spent LiCoO2 Cathodes for High-Voltage Operation
    Liu, Zhenzhen
    Han, Miaomiao
    Zhang, Shengbo
    Li, Huaimeng
    Wu, Xi
    Fu, Zhen
    Zhang, Haimin
    Wang, Guozhong
    Zhang, Yunxia
    ADVANCED MATERIALS, 2024, 36 (32)
  • [10] Weakened Solvation Structure Electrolytes Enable High-Voltage Graphite||LiCoO2 Batteries
    You, Haipeng
    Jiang, Jiaqing
    Chen, Long
    Li, Chunzhong
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (15): : 6696 - 6703