Molecular Modulation Based on the Terminal Substituent in Twistacenes for Organic Light-Emitting Diodes

被引:5
|
作者
Wei, Changting [1 ,2 ]
Wu, Jie [1 ]
Zhang, Dongyu [1 ]
Su, Wenming [1 ]
Xiao, Jinchong [3 ]
Cui, Zheng [1 ]
机构
[1] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Printable Elect Res Ctr, 398 Ruoshui Rd,Suzhou Ind Pk, Suzhou 215123, Jiangsu, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Inst Optoelect & Nanomat, MIIT Key Lab Adv Display Mat & Devices, Nanjing 210094, Jiangsu, Peoples R China
[3] Hebei Univ, Coll Chem & Environm Sci, Key Lab Chem Biol Hebei Prov, Baoding 071002, Peoples R China
基金
海峡两岸自然科学基金; 中国国家自然科学基金;
关键词
crystallographic analyse; molecular modulation; organic light-emitting diodes; twistacene; ACTIVATED DELAYED FLUORESCENCE; AGGREGATION-INDUCED EMISSION; PHYSICAL-PROPERTIES; OPTOELECTRONIC PROPERTIES; EFFICIENCY; CRYSTAL; DEVICES; DERIVATIVES; EMITTERS; BEHAVIOR;
D O I
10.1002/ajoc.201700576
中图分类号
O62 [有机化学];
学科分类号
070303 ; 081704 ;
摘要
Three novel end-capping twistacene derivatives with phenyl (PyDP), naphthyl (PyDN), and anthryl groups (PyDA) have been designed and synthesized. Given the crystallographic analyses, the as-prepared molecules exhibited a twisted topological structure with the torsion angles of 35.99 degrees for PyDP and 45.85 degrees for PyDA. In addition, there is no pi-stacking interaction in PyDP. However, PyDA displayed pi-stacking interactions between the terminal intermolecular anthracene groups. The electroluminescent performance of OLEDs shows that devices with PyDP and PyDA outperform the PyDN-based device, which is attributable to their higher fluorescence quantum yields. The maximum EQE value for PyDP reaches 3.10%, which illustrates that the terminal substituent can affect the performance of OLEDs to a certain extent.
引用
收藏
页码:424 / 431
页数:8
相关论文
共 50 条
  • [1] A New Door for Molecular-Based Organic Light-Emitting Diodes
    Jou, Jwo-Huei
    Chen, Cheng-Chung
    Wang, Wei-Ben
    Hsu, Mao-Feng
    Wang, Chun-Jan
    Chen, Chin-Ti
    Wu, Min-Fei
    Chen, Hung-Yang
    Shyue, Jing-Jong
    Chin, Chih-Lung
    ORGANIC LIGHT EMITTING MATERIALS AND DEVICES XII, 2008, 7051
  • [2] Device physics of organic light-emitting diodes based on molecular materials
    Bruetting, Wolfgang
    Berleb, Stefan
    Mueckl, Anton G.
    ORGANIC ELECTRONICS, 2001, 2 (01) : 1 - 36
  • [3] Efficient molecular organic light-emitting diodes based on silole derivatives
    Palilis, LC
    Mäkinen, AJ
    Murata, H
    Uchida, M
    Kafafi, ZH
    ORGANIC LIGHT-EMITTING MATERIALS AND DEVICES VI, 2002, 4800 : 256 - 270
  • [4] Molecular Orientation Effects in Organic Light-Emitting Diodes
    Marcato, Tommaso
    Shih, Chih-Jen
    HELVETICA CHIMICA ACTA, 2019, 102 (05)
  • [5] Organic light-emitting diodes
    Deussen, M
    Bassler, H
    CHEMIE IN UNSERER ZEIT, 1997, 31 (02) : 76 - 86
  • [6] Substituent effects in twisted dibenzotetracene derivatives: Blue emitting materials for organic light-emitting diodes
    Xiao, Jinchong
    Liu, Zhenying
    Zhang, Xuemin
    Wu, Weichen
    Ren, Tiejun
    Lv, Bo
    Jiang, Li
    Wang, Xuefei
    Chen, Hua
    Su, Wenming
    Zhao, Jianwen
    DYES AND PIGMENTS, 2015, 112 : 176 - 182
  • [7] Highly efficient molecular organic light-emitting diodes based on exciplex emission
    Palilis, LC
    Mäkinen, AJ
    Uchida, M
    Kafafi, ZH
    APPLIED PHYSICS LETTERS, 2003, 82 (14) : 2209 - 2211
  • [8] Organic light-emitting diodes based on pyrazoloquinoxaline derivatives
    Pokladko-Kowar, Monika
    Wojtasik, Katarzyna
    PRZEGLAD ELEKTROTECHNICZNY, 2022, 98 (09): : 220 - 223
  • [9] Microdisplays based upon organic light-emitting diodes
    Howard, WE
    Prache, OF
    IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2001, 45 (01) : 115 - 127
  • [10] Organic Light-Emitting Diodes Based on Imidazole Semiconductors
    Chen, Wen-Cheng
    Zhu, Ze-Lin
    Lee, Chun-Sing
    ADVANCED OPTICAL MATERIALS, 2018, 6 (18):