MANIFOLD LEARNING AND NONLINEAR HOMOGENIZATION

被引:1
|
作者
Chen, Shi [1 ]
Li, Qin [2 ,3 ]
Lu, Jianfeng [4 ,5 ]
Wright, Stephen J. [6 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Univ Wisconsin, Math Dept, Madison, WI 53706 USA
[3] Univ Wisconsin, Discovery Inst, Madison, WI 53706 USA
[4] Duke Univ, Dept Math, Dept Phys, Durham, NC 27708 USA
[5] Duke Univ, Dept Chem, Durham, NC 27708 USA
[6] Univ Wisconsin, Dept Comp Sci, 1210 W Dayton St, Madison, WI 53706 USA
来源
MULTISCALE MODELING & SIMULATION | 2022年 / 20卷 / 03期
基金
美国国家科学基金会;
关键词
Key words; nonlinear homogenization; multiscale problems; manifold learning; domain decomposition; FINITE-ELEMENT-METHOD; HETEROGENEOUS MULTISCALE METHOD; ASYMPTOTIC-PRESERVING SCHEMES; RADIATIVE HEAT-TRANSFER; KINETIC-EQUATIONS; ELLIPTIC PDES; DIMENSIONALITY REDUCTION; DIFFUSION-APPROXIMATION; POSITIVE SOLUTIONS; GEOMETRIC METHODS;
D O I
10.1137/20M1377771
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe an efficient domain decomposition-based framework for nonlinear mul-tiscale PDE problems. The framework is inspired by manifold learning techniques and exploits the tangent spaces spanned by the nearest neighbors to compress local solution manifolds. Our frame-work is applied to a semilinear elliptic equation with oscillatory media and a nonlinear radiative transfer equation; in both cases, significant improvements in efficacy are observed. This new method does not rely on a detailed analytical understanding of multiscale PDEs, such as their asymptotic limits, and thus is more versatile for general multiscale problems.
引用
收藏
页码:1093 / 1126
页数:34
相关论文
共 50 条
  • [1] Unsupervised nonlinear manifold learning
    Brucher, Matthieu
    Heinrich, Christian
    Heitz, Fabrice
    Armspach, Jean-Paul
    2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 673 - +
  • [2] Sequential nonlinear manifold learning
    Kumar, S.
    Guivant, J.
    Upcroft, B.
    Durrant-Whyte, H. F.
    INTELLIGENT DATA ANALYSIS, 2007, 11 (02) : 203 - 222
  • [3] Nonlinear manifold learning for data stream
    Law, MHC
    Zhang, N
    Jain, AK
    PROCEEDINGS OF THE FOURTH SIAM INTERNATIONAL CONFERENCE ON DATA MINING, 2004, : 33 - 44
  • [4] An Explicit Nonlinear Mapping for Manifold Learning
    Qiao, Hong
    Zhang, Peng
    Wang, Di
    Zhang, Bo
    IEEE TRANSACTIONS ON CYBERNETICS, 2013, 43 (01) : 51 - 63
  • [5] Making nonlinear manifold learning models interpretable: The manifold grand tour
    Lisboa, Paulo J. G.
    Martin-Guerrero, Jose D.
    Vellido, Alfredo
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (22) : 8982 - 8988
  • [6] Machine learning-boosted nonlinear homogenization
    Tannous, Mikhael
    Ghnatios, Chady
    Castelnau, Olivier
    Castaneda, Pedro Ponte
    Chinesta, Francisco
    MECHANICS OF MATERIALS, 2025, 201
  • [7] Nonlinear Shape-Texture Manifold Learning
    Wang, Xiaokan
    Mao, Xia
    Caleanu, Catalin-Daniel
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2010, E93D (07): : 2016 - 2019
  • [8] Cartogram visualization for nonlinear manifold learning models
    Vellido, Alfredo
    Garcia, David L.
    Nebot, Angela
    DATA MINING AND KNOWLEDGE DISCOVERY, 2013, 27 (01) : 22 - 54
  • [9] Clifford Manifold Learning for Nonlinear Dimensionality Reduction
    Cao Wenming
    CHINESE JOURNAL OF ELECTRONICS, 2009, 18 (04): : 650 - 654
  • [10] Head pose estimation by nonlinear manifold learning
    Raytchev, B
    Yoda, I
    Sakaue, K
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 4, 2004, : 462 - 466