共 50 条
Rejoinder: Confidence Intervals for Nonparametric Empirical Bayes Analysis
被引:0
|作者:
Ignatiadis, Nikolaos
[1
]
Wager, Stefan
[2
]
机构:
[1] Stanford Univ, Dept Stat, Sequoia Hall,390 Jane Stanford Way, Stanford, CA 94305 USA
[2] Stanford Univ, Grad Sch Business, Stanford, CA 94305 USA
基金:
美国国家科学基金会;
关键词:
DECONVOLUTION DENSITY;
COMPOUND DECISIONS;
LINEAR FUNCTIONALS;
INFERENCE;
MODEL;
D O I:
10.1080/01621459.2022.2093729
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
In an empirical Bayes analysis, we use data from repeated sampling to imitate inferences made by an oracle Bayesian with extensive knowledge of the data-generating distribution. Existing results provide a comprehensive characterization of when and why empirical Bayes point estimates accurately recover oracle Bayes behavior. In this paper, we develop flexible and practical confidence intervals that provide asymptotic frequentist coverage of empirical Bayes estimands, such as the posterior mean or the local false sign rate. The coverage statements hold even when the estimands are only partially identified or when empirical Bayes point estimates converge very slowly. Supplementary materials for this article are available online. © 2022 American Statistical Association.
引用
收藏
页码:1192 / 1199
页数:8
相关论文