X-wave solutions of complex Ginzburg-Landau equations

被引:7
|
作者
Zhou, CT
Yu, MY
He, XT
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[2] Ruhr Univ Bochum, Inst Theoret Phys 1, D-44780 Bochum, Germany
来源
PHYSICAL REVIEW E | 2006年 / 73卷 / 02期
关键词
D O I
10.1103/PhysRevE.026209
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A solution in the form of X-wave patterns of the complex Ginzburg-Landau equation with a harmonic background inhomogeneity is obtained. The pattern can be attributed to the effects of the harmonic potential and the boundary configuration and size. By varying the harmonic of the background potential, the competition among three types of wave patterns: spiral, X, and target, is investigated by following the evolution of the Fourier modes.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] New solutions to the complex Ginzburg-Landau equations
    Conte, Robert
    Musette, Micheline
    Ng, Tuen Wai
    Wu, Chengfa
    PHYSICAL REVIEW E, 2022, 106 (04)
  • [2] STABILITY OF PLANE-WAVE SOLUTIONS OF COMPLEX GINZBURG-LANDAU EQUATIONS
    MATKOWSKY, BJ
    VOLPERT, V
    QUARTERLY OF APPLIED MATHEMATICS, 1993, 51 (02) : 265 - 281
  • [3] Localized solutions to the coupled complex Ginzburg-Landau equations
    Sakaguchi, H
    PROGRESS OF THEORETICAL PHYSICS, 1996, 95 (04): : 823 - 827
  • [4] Stability of travelling wave solutions of the derivative Ginzburg-Landau equations
    Laboratory of Computational Physics, Center for Nonlinear Studies, Inst. Appl. Phys. and Compl. Math., Beijing 100088, China
    不详
    不详
    不详
    Comm. Nonlinear Sci. Numer. Simul., 3 (150-156):
  • [5] SYMMETRY OF SOLUTIONS OF GINZBURG-LANDAU EQUATIONS
    CHANILLO, S
    KIESSLING, MKH
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (08): : 1023 - 1026
  • [6] Minimax solutions of the Ginzburg-Landau equations
    Lin F.H.
    Lin T.-C.
    Selecta Mathematica, 1997, 3 (1) : 99 - 113
  • [7] NONTRIVIAL SOLUTIONS OF THE GINZBURG-LANDAU EQUATIONS
    KLIMOV, VS
    THEORETICAL AND MATHEMATICAL PHYSICS, 1982, 50 (03) : 252 - 256
  • [8] Symmetric solutions of Ginzburg-Landau equations
    Gustafson, S
    SPECTRAL AND SCATTERING THEORY, 1998, : 33 - 38
  • [9] MULTIVORTEX SOLUTIONS OF THE GINZBURG-LANDAU EQUATIONS
    WEINBERG, EJ
    PHYSICAL REVIEW D, 1979, 19 (10): : 3008 - 3012
  • [10] Inertial ranges for turbulent solutions of complex Ginzburg-Landau equations
    Levermore, CD
    Stark, DR
    PHYSICS LETTERS A, 1997, 234 (04) : 269 - 280