Self-Healing of Polymers and Polymer Composites

被引:39
|
作者
Irzhak, Vadim I. [1 ]
Uflyand, Igor E. [2 ]
Dzhardimalieva, Gulzhian I. [1 ,3 ]
机构
[1] Russian Acad Sci, Fed Res Ctr Problems Chem Phys & Med Chem, Chernogolovka 142432, Russia
[2] Southern Fed Univ, Dept Chem, Rostov Na Donu 344090, Russia
[3] Natl Res Univ, Moscow Aviat Inst, Moscow 125993, Russia
关键词
self-healing materials; self-healing polymers; covalent adaptable networks; vitrimers; repairing capsular components; microvascular networks; non-covalent healing; self-healing metallopolymers; metal-ligand coordination interactions; FIBER-REINFORCED POLYMER; DISULFIDE CROSS-LINKS; MECHANICAL-PROPERTIES; SHAPE-MEMORY; PHYSICAL HYDROGELS; HIGH TOUGHNESS; HIGH-STRENGTH; EPOXY-RESIN; NETWORKS; VITRIMERS;
D O I
10.3390/polym14245404
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
This review is devoted to the description of methods for the self-healing of polymers, polymer composites, and coatings. The self-healing of damages that occur during the operation of the corresponding structures makes it possible to extend the service life of the latter, and in this case, the problem of saving non-renewable resources is simultaneously solved. Two strategies are considered: (a) creating reversible crosslinks in the thermoplastic and (b) introducing a healing agent into cracks. Bond exchange reactions in network polymers (a) proceed as a dissociative process, in which crosslinks are split into their constituent reactive fragments with subsequent regeneration, or as an associative process, the limiting stage of which is the interaction of the reactive end group and the crosslink. The latter process is implemented in vitrimers. Strategy (b) is associated with the use of containers (hollow glass fibers, capsules, microvessels) that burst under the action of a crack. Particular attention is paid to self-healing processes in metallopolymer systems.
引用
收藏
页数:39
相关论文
共 50 条
  • [1] Self-healing Polymers and Composites
    White, Scott R.
    Blaiszik, Benjamin J.
    Kramer, Sharlotte L. B.
    Olugebefola, Solar C.
    Moore, Jeffrey S.
    Sottos, Nancy R.
    AMERICAN SCIENTIST, 2011, 99 (05) : 392 - 399
  • [2] Self-Healing Polymers and Composites
    Blaiszik, B. J.
    Kramer, S. L. B.
    Olugebefola, S. C.
    Moore, J. S.
    Sottos, N. R.
    White, S. R.
    ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 40, 2010, 40 : 179 - 211
  • [3] Self-healing polymers and composites
    Mauldin, T. C.
    Kessler, M. R.
    INTERNATIONAL MATERIALS REVIEWS, 2010, 55 (06) : 317 - 346
  • [4] A review on self-healing polymers and polymer composites for structural applications
    Cioffi, M. Odila H.
    Bomfim, Anne S. C.
    Ambrogi, Veronica
    Advani, Suresh G.
    POLYMER COMPOSITES, 2022, 43 (11) : 7643 - 7668
  • [5] Introduction: self-healing polymers and composites
    Sottos, Nancy
    White, Scott
    Bond, Ian
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2007, 4 (13) : 347 - 348
  • [6] Self-Healing Polymers and Polymer-Based Composites Containing Microcapsules
    Wang Haiping
    Rong Minzhi
    Zhang Mingqiu
    PROGRESS IN CHEMISTRY, 2010, 22 (12) : 2397 - 2407
  • [7] The way to autonomic self-healing polymers and composites
    Pegoretti, A.
    EXPRESS POLYMER LETTERS, 2009, 3 (02): : 62 - 62
  • [8] Self-Healing Polymers and Composites: Extrinsic Routes
    Agrawal, Nidhi
    Arora, Bharti
    MINI-REVIEWS IN ORGANIC CHEMISTRY, 2022, 19 (04) : 496 - 512
  • [9] Self-healing polymers and composites for extreme environments
    Heo, Yunseon
    Malakooti, Mohammad H.
    Sodano, Henry A.
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (44) : 17403 - 17411
  • [10] Self-healing polymer composites for electronic skin
    Wang, Chao
    Tee, Benjamine C-K
    Allen, Ranulfo
    Bao, Zhenan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245