Mechanisms for the degradation of phosphor excitation efficiency by short wavelength vacuum ultraviolet radiation in plasma discharge devices

被引:4
|
作者
Takeda, Eiji [1 ,2 ]
Zukawa, Takehiro [3 ]
Ishibashi, Tasuku [4 ]
Yoshino, Kyohei [5 ]
Morita, Yukihiro [3 ,6 ]
Fujii, Minoru [1 ]
机构
[1] Kobe Univ, Grad Sch Engn, Dept Elect & Elect Engn, Nada Ku, 1-1 Rokkoudai, Kobe, Hyogo 6578501, Japan
[2] Panasonic Corp, Automot & Ind Syst Co, Engn Div, Sensing Solut Dev Ctr, 1006 Kadoma, Kadoma, Osaka 5718506, Japan
[3] Panasonic Corp, Technol Innovat Div, Inst Sensors & Devices, 1006 Kadoma, Kadoma, Osaka 5718508, Japan
[4] Panasonic Corp, Eco Solut Co, Housing Syst Business Div, 1048 Kadoma, Kadoma, Osaka 5718686, Japan
[5] Panasonic Corp, Automot & Ind Syst Co, Automot Infotainment Syst Business Div, 4261 Ikonobe, Yokohama, Kanagawa 2248520, Japan
[6] Osaka Univ, Grad Sch Engn, Panasonic Device Sci Res Alliance Lab, 1-1 Yamadaoka, Suita, Osaka 5650871, Japan
关键词
plasma discharge; Luminous degradation; Organic residue; Protective layer; DIELECTRIC BARRIER DISCHARGE; DISPLAY PANEL; MGO; SURFACE; IMPROVEMENT; EMISSION; LIFETIME; HISTORY; PHYSICS; LAYER;
D O I
10.1016/j.jpcs.2018.08.033
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The mechanism for the degradation of phosphor excitation efficiency in flat panel plasma discharge devices was investigated. We found that remaining organic compounds contained in the binders of phosphors were transformed to vacuum ultraviolet (VUV) absorbing substances over prolonged aging, which reduce the excitation efficiency of a phosphor, especially in the shorter wavelength VUV range. We also demonstrated that re-deposition of a sputtered protective layer on a phosphor further reduced the luminescence excitation efficiency due to the absorption of VUV radiation by the layer.
引用
收藏
页码:274 / 280
页数:7
相关论文
共 23 条
  • [1] Vacuum ultraviolet radiation of continuous ECR discharge plasma
    Lapin R.L.
    Golubev S.V.
    Skalyga V.A.
    Izotov I.V.
    Bokhanov A.F.
    Kiseleva E.M.
    Vybin S.S.
    Applied Physics, 2023, (01): : 33 - 37
  • [2] ABSORPTION OF RADIATION IN THE VACUUM ULTRAVIOLET BY N ATOMS PRODUCED IN A DISCHARGE PLASMA IN NITROGEN
    EHLER, AW
    WEISSLER, GL
    PHYSICAL REVIEW, 1955, 98 (02): : 561 - 561
  • [3] Capillary Plasma Electrode Discharge as an Intense and Efficient Source of Vacuum Ultraviolet Radiation for Plasma Display
    Park, Soo-Ho
    Cho, Tae-Seung
    Becker, Kurt H.
    Kunhardt, Erich E.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2009, 37 (08) : 1611 - 1614
  • [4] VACUUM ULTRAVIOLET PLASMA ARC RADIATION SOURCE FOR 300-1000-A WAVELENGTH REGION
    LEVY, ME
    HUFFMAN, RE
    APPLIED OPTICS, 1970, 9 (01): : 41 - &
  • [5] Initiation techniques and the vacuum-ultraviolet-radiation efficiency of a stabilized multichannel surface discharge
    Tcheremiskine, VI
    Uteza, OP
    Sentis, ML
    Mikheev, LD
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (01): : 1 - 8
  • [6] Development of Extreme Ultraviolet Radiation Source using Laser Triggered Vacuum Spark Discharge Plasma
    Watanabe, Masato
    Yamada, Junzaburo
    Zhu, Qiushi
    Hotta, Eiki
    DENSE Z-PINCHES, 2009, 1088 : 188 - 191
  • [7] Effect of thermal stress and short-wavelength visible radiation on phosphor-embedded LED encapsulant degradation
    Appaiah, Prathika
    Narendran, Nadarajah
    Perera, Indika U.
    Zhu, Yiting
    Liu, Yi-Wei
    OPTICAL MATERIALS, 2015, 46 : 6 - 11
  • [8] EXCITATION OF A SHORT-WAVELENGTH SPECTRUM OF SURFACE-WAVES IN A PLASMA BY AN INTENSE ELECTROMAGNETIC-RADIATION
    KUKLIN, VM
    PANCHENKO, IP
    JETP LETTERS, 1986, 43 (05) : 302 - 305
  • [9] Regulation of the biological properties of medical polymer materials with the use of a gas-discharge plasma and vacuum ultraviolet radiation
    Vasilets, VN
    Kuznetsov, AV
    Sevast'yanov, VI
    HIGH ENERGY CHEMISTRY, 2006, 40 (02) : 79 - 85
  • [10] Regulation of the biological properties of medical polymer materials with the use of a gas-discharge plasma and vacuum ultraviolet radiation
    V. N. Vasilets
    A. V. Kuznetsov
    V. I. Sevast’yanov
    High Energy Chemistry, 2006, 40 : 79 - 85