Geometric quadratic Chabauty and p-adic heights

被引:0
|
作者
Duque-Rosero, Juanita [1 ]
Hashimoto, Sachi [2 ]
Spelier, Pim [3 ]
机构
[1] Dartmouth Coll, 6188 Kemeny Hall, Hanover, NH 03755 USA
[2] Max Planck Inst Math Nat Wissensch, Inselstr 22, D-04103 Leipzig, Germany
[3] Leiden Univ, Math Inst, Postbus 9512, NL-2300 RA Leiden, Netherlands
基金
美国国家科学基金会;
关键词
Geometric quadratic Chabauty; Rational points; p-Adic heights; Hyperelliptic curves; Chabauty's method; Biextensions; RATIONAL-POINTS; VARIETIES; EQUATIONS; CURVES;
D O I
10.1016/j.exmath.2023.05.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a curve of genus g > 1 over Q whose Jacobian J has Mordell-Weil rank r and Neron-Severi rank rho. When r < g+ rho - 1, the geometric quadratic Chabauty method determines a finite set of p-adic points containing the rational points of X. We describe algorithms for geometric quadratic Chabauty that translate the geometric quadratic Chabauty method into the language of p-adic heights and p-adic (Coleman) integrals. This translation also allows us to give a comparison to the (original) cohomological method for quadratic Chabauty. We show that the finite set of p-adic points produced by the geometric method is contained in the finite set produced by the cohomological method, and give a description of their difference.(c) 2023 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:631 / 674
页数:44
相关论文
共 50 条
  • [1] QUADRATIC CHABAUTY AND RATIONAL POINTS, I: p-ADIC HEIGHTS
    Balakrishnan, Jennifer S.
    Dogra, Netan
    DUKE MATHEMATICAL JOURNAL, 2018, 167 (11) : 1981 - 2038
  • [2] Quadratic Chabauty: p-adic heights and integral points on hyperelliptic curves
    Balakrishnan, Jennifer S.
    Besser, Amnon
    Mueller, J. Steffen
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 720 : 51 - 79
  • [3] QUADRATIC CHABAUTY AND p-ADIC GROSS-ZAGIER
    Hashimoto, Sachi
    arXiv, 2022,
  • [4] QUADRATIC CHABAUTY AND p-ADIC GROSS-ZAGIER
    Hashimoto, Sachi
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (05) : 3725 - 3760
  • [5] Derived p-adic heights
    Bertolini, M
    Darmon, H
    AMERICAN JOURNAL OF MATHEMATICS, 1995, 117 (06) : 1517 - 1554
  • [6] Derived p-adic heights and p-adic L-functions
    Howard, B
    AMERICAN JOURNAL OF MATHEMATICS, 2004, 126 (06) : 1315 - 1340
  • [7] p-adic heights and Vologodsky integration
    Besser, Amnon
    JOURNAL OF NUMBER THEORY, 2022, 239 : 273 - 297
  • [8] p-ADIC HEIGHTS OF HEEGNER POINTS AND Λ-ADIC REGULATORS
    Balakrishnan, Jennifer S.
    Ciperiani, Mirela
    Stein, William
    MATHEMATICS OF COMPUTATION, 2015, 84 (292) : 923 - 954
  • [9] β-EXPANSION OF p-ADIC NUMBERS WITH PISOT-CHABAUTY BASES
    Ghorbel, Marwa
    Ghorbel, Rim
    Hbaib, Mohamed
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2025, 29 (564): : 117 - 128
  • [10] IWASAWA THEORY AND P-ADIC HEIGHTS
    PERRINRIOU, B
    INVENTIONES MATHEMATICAE, 1992, 109 (01) : 137 - 185