An interlayer-based positive charge compensation strategy for the preparation of highly selective Mg2+/Li+ separation nanofiltration membranes

被引:43
|
作者
Chen, Kuo [1 ]
Li, Feiyang [1 ]
Wei, Tao [1 ]
Zhou, Hengyu [2 ]
Zhang, Tengfang [3 ]
Zhao, Shengchao [1 ]
Xie, Tengteng [1 ]
Sun, Haixiang [3 ]
Li, Peng [1 ]
Niu, Jason [2 ]
机构
[1] China Univ Petr East China, Coll Chem Engn, State Key Lab Heavy Oil Proc, Qingdao 266580, Peoples R China
[2] Shenzhen Univ, Inst Adv Study, Shenzhen 518060, Peoples R China
[3] China Univ Petr East China, Sch Mat Sci & Engn, Qingdao 266580, Peoples R China
关键词
Nanofiltration membranes; Interlayer; Interfacial polymerization; Mg2+; Li plus separation; LITHIUM; MAGNESIUM; BRINE; REJECTION; TRANSPORT; NORIA;
D O I
10.1016/j.memsci.2023.121882
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The Mg2+/Li+ screening selectivity determines the practical application of nanofiltration technology in lithium extraction from salt-lake brines and industrial lithium production. In this work, a membrane structure design strategy based on the interlayers was developed to prepare nanofiltration (NF) membranes with high Mg2+/Li+ separation selectivity and high permeability. Through investigating the influence of the interlayer charge on the structure and performance of the NF membrane, the interlayer for the preparation of the NF membrane with high Mg2+/Li+ separation selectivity was screened. Relevant characterizations indicate that the positively charged interlayer can endow the NF membrane with appropriate pore size and surface charge density to achieve high Mg2+/Li+ separation selectivity through the synergistic effect of size sieving and Donnan exclusion. Moreover, the pore size of the NF membrane is controlled by the release rate of the piperazine (PIP) from the interlayer, while the surface charge density of the NF membrane is jointly determined by the charge of the interlayer and PA layer. The performance evaluation suggests that the NF membrane prepared with the best screened interlayer has a Mg2+/Li+ separation factor up to 88.6 while maintaining a high permeability (22.5 L m(-2) h(-1)center dot bar(-1)), which is better than that of the most membranes reported in the literature. Overall, this work is expected to promote the practical application of NF membranes in lithium extraction from salt-lake brines and industrial lithium production.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Dual-skin layer nanofiltration membranes for highly selective Li+/Mg2+ separation
    Yang, Zhao
    Fang, Wangxi
    Wang, Zhenyi
    Zhang, Ruolin
    Zhu, Yuzhang
    Jin, Jian
    JOURNAL OF MEMBRANE SCIENCE, 2021, 620
  • [2] Dual-electric layer nanofiltration membranes based on polyphenol/PEI interlayer for highly efficient Mg2+/Li+ separation
    Chen, Kuo
    Zhao, Shengchao
    Lan, Hongling
    Xie, Tengteng
    Wang, Hao
    Chen, Yuhao
    Li, Peng
    Sun, Haixiang
    Niu, Q. Jason
    Yang, Chaohe
    JOURNAL OF MEMBRANE SCIENCE, 2022, 660
  • [3] Enhanced nanofiltration membranes for Mg2+/Li+ separation: Development of a polyethyleneimine positively charged interlayer
    Hui, Hongsen
    Ding, Huiying
    Liu, Quan
    Zhao, Haisong
    Hou, Jian
    Zhang, Lei
    Pei, Hongchang
    Li, Xianhui
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 361
  • [4] Development of highly selective composite polymeric membranes for Li+/Mg2+ separation
    Saif, H. M.
    Huertas, R. M.
    Pawlowski, S.
    Crespo, J. G.
    Velizarov, S.
    JOURNAL OF MEMBRANE SCIENCE, 2021, 620
  • [5] Investigation of Mg2+/Li+ Separation by Nanofiltration
    Yang Gang
    Shi Hong
    Liu Wenqiang
    Xing Weihong
    Xu Nanping
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2011, 19 (04) : 586 - 591
  • [6] Positively charged nanofiltration membranes for efficient Mg2+/Li+ separation from high Mg2+/Li+ ratio brine
    Zhao, Guoke
    Zhang, Yang
    Li, Yu
    Pan, Guoyuan
    Liu, Yiqun
    ADVANCED MEMBRANES, 2023, 3
  • [7] Ultra-fast interlayer construction strategy for the preparation of NF membranes with high Li+/Mg2+ separation performance
    Bai, Shibo
    Jiang, Chi
    Li, Jiawang
    Miao, Chuanyu
    Li, Mengxin
    Wang, Ming
    Liu, Xinliang
    Hou, Yingfei
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 359
  • [8] Purity metric for evaluating Li+/Mg2+ separation performance of nanofiltration membranes
    He, Rongrong
    Li, Wei
    Zhu, Junyong
    He, Tao
    DESALINATION AND WATER TREATMENT, 2025, 321
  • [9] Intercalation of small molecules in the selective layer of polyamide nanofiltration membranes facilitates the separation of Mg2+/Li+
    Li, Junwei
    Fang, Long
    Xu, Daliang
    Zhang, Xi
    Jiang, Lei
    Zhu, Qingjuan
    Chen, Qin
    Jin, Pengrui
    Volodine, Alexander
    Dewil, Raf
    Gui, Xiahui
    Gao, Qieyuan
    Van der Bruggen, Bart
    CHEMICAL ENGINEERING JOURNAL, 2024, 487
  • [10] Nanofiltration membrane based on a dual-reinforcement strategy of support and selective layers for efficient Mg2+/Li+ separation
    Wang, Hongshan
    Zeng, Guangyong
    Yang, Zhaomei
    Chen, Xi
    Wang, Ludan
    Xiang, Yuan
    Zeng, Xiangdong
    Feng, Zhenhua
    Tang, Binbin
    Yu, Xudong
    Zeng, Ying
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 330