Microfluidics-based patient-derived disease detection tool for deep learning-assisted precision medicine

被引:1
|
作者
Hua, Haojun [1 ,2 ]
Zhou, Yunlan [3 ]
Li, Wei [1 ,2 ]
Zhang, Jing [1 ]
Deng, Yanlin [1 ]
Khoo, Bee Luan [1 ,2 ,4 ]
机构
[1] City Univ Hong Kong, Dept Biomed Engn, Kowloon, 83 Tat Chee Ave, Hong Kong 999077, Peoples R China
[2] Hong Kong Ctr Cerebrocardiovasc Hlth Engn COCHE, Hong Kong 999077, Peoples R China
[3] Shanghai Jiao Tong Univ, Xinhua Hosp, Sch Med, Dept Clin Lab, Shanghai 200092, Peoples R China
[4] City Univ Hong Kong, Futian Shenzhen Res Inst, Dept Precis Diagnost & Therapeut Technol, Shenzhen 518057, Peoples R China
关键词
CANCER; DIAGNOSTICS; EXPANSION; CELLS;
D O I
10.1063/5.0172146
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Cancer spatial and temporal heterogeneity fuels resistance to therapies. To realize the routine assessment of cancer prognosis and treatment, we demonstrate the development of an Intelligent Disease Detection Tool (IDDT), a microfluidic-based tumor model integrated with deep learning-assisted algorithmic analysis. IDDT was clinically validated with liquid blood biopsy samples (n = 71) from patients with various types of cancers (e.g., breast, gastric, and lung cancer) and healthy donors, requiring low sample volume (similar to 200 mu l) and a high-throughput 3D tumor culturing system (similar to 300 tumor clusters). To support automated algorithmic analysis, intelligent decision-making, and precise segmentation, we designed and developed an integrative deep neural network, which includes Mask Region-Based Convolutional Neural Network (Mask R-CNN), vision transformer, and Segment Anything Model (SAM). Our approach significantly reduces the manual labeling time by up to 90% with a high mean Intersection Over Union (mIoU) of 0.902 and immediate results (<2 s per image) for clinical cohort classification. The IDDT can accurately stratify healthy donors (n = 12) and cancer patients (n = 55) within their respective treatment cycle and cancer stage, resulting in high precision (similar to 99.3%) and high sensitivity (similar to 98%). We envision that our patient-centric IDDT provides an intelligent, label-free, and cost-effective approach to help clinicians make precise medical decisions and tailor treatment strategies for each patient.
引用
收藏
页数:17
相关论文
共 25 条
  • [1] Bladder cancer: Patient-derived organoids as a tool for precision medicine
    Minoli, M.
    Kiener, M.
    Federizzi, T.
    Gasperini, P.
    Demichelis, F.
    Thalmann, G. N.
    Seiler-Blarer, R.
    Kruithof-De Julio, M.
    [J]. EUROPEAN UROLOGY, 2021, 79 : S637 - S637
  • [2] BLADDER CANCER: PATIENT-DERIVED ORGANOIDS AS A TOOL FOR PRECISION MEDICINE
    Minoli, Martina
    Kiener, Mirjam
    Fedrizzi, Tarcisio
    Gasperini, Paola
    Demichelis, Francesca
    Thalmann, George Niklaus
    Seiler-Blarer, Roland
    Kruithof-de Julio, Marianna
    [J]. JOURNAL OF UROLOGY, 2021, 206 : E1135 - E1136
  • [3] Federated Learning-Assisted Coati Deep Learning-Based Model for Intrusion Detection in MANET
    Hussain, S. Faizal Mukthar
    Fathima, S. M. H. Sithi Shameem
    [J]. International Journal of Computational Intelligence Systems, 2024, 17 (01)
  • [4] Novel ex vivo patient-derived 3D model as a powerful tool to apply precision medicine
    Simeone, Kayla
    Guay-Lord, Robin
    Lateef, Muhammad Abdul
    Peant, Benjamin
    Carmona, Euridice
    Kendall-Dupont, Jennifer
    Orimoto, Adriana Mari
    Gervais, Thomas
    Mes-Masson, Anne-Marie
    Saad, Fred
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2018, 36 (15)
  • [5] 3D patient-derived gastric cancer organoids as a tool for functional precision medicine for gastric cancer patients
    Cabeza, M.
    Papaccio, F.
    Gutierrez Bravo, M. F.
    Gambardella, V.
    Alfaro-Cervello, C.
    Martinez-Ciarpaglini, C.
    Garzon-Lloria, Z.
    Rentero-Garrido, P.
    Zuniga-Trejos, S.
    Seda-Garcia, E.
    Gimeno-Valiente, F.
    Pena, A.
    Barrios, M.
    Tarazona, N.
    Roda, D.
    Cervantes, A.
    Fleitas, T.
    Castillo, J.
    [J]. ANNALS OF ONCOLOGY, 2020, 31 : S919 - S919
  • [6] Deep learning-assisted flavonoid-based fluorescent sensor array for the nondestructive detection of meat freshness
    Li, Min
    Xu, Jianguo
    Peng, Chifang
    Wang, Zhouping
    [J]. FOOD CHEMISTRY, 2024, 447
  • [7] The TRIPLEX study: use of patient-derived tumor organoids as an innovative tool for precision medicine in triple-negative breast cancer
    Divoux, Jordane
    Florent, Romane
    Jacobs, Margaux
    Lequesne, Justine
    Grellard, Jean-Michel
    San, Chankannira
    Grossi, Sara
    Kerdja, Katia
    Clarisse, Benedicte
    Boudier, Gwenaelle
    Cherifi, Francois
    Briand, Melanie
    Dolivet, Enora
    Johnson, Alisson
    Dubois, Brice
    Harter, Valentin
    Lacroix, Joelle
    Raboutet, Charlotte
    Marie, Brigitte
    Rousseau, Nathalie
    Blanc-Fournier, Cecile
    Vaur, Dominique
    Figeac, Martin
    Poulain, Laurent
    Weiswald, Louis-Bastien
    Emile, George
    [J]. BMC CANCER, 2023, 23 (01)
  • [8] The TRIPLEX study: use of patient-derived tumor organoids as an innovative tool for precision medicine in triple-negative breast cancer
    Jordane Divoux
    Romane Florent
    Margaux Jacobs
    Justine Lequesne
    Jean-Michel Grellard
    Chankannira San
    Sara Grossi
    Katia Kerdja
    Bénédicte Clarisse
    Gwenaelle Boudier
    François Cherifi
    Mélanie Briand
    Enora Dolivet
    Alisson Johnson
    Brice Dubois
    Valentin Harter
    Joëlle Lacroix
    Charlotte Raboutet
    Brigitte Marie
    Nathalie Rousseau
    Cécile Blanc-Fournier
    Dominique Vaur
    Martin Figeac
    Laurent Poulain
    Louis-Bastien Weiswald
    George Emile
    [J]. BMC Cancer, 23 (1)
  • [9] Bridge Surface Defect Localization Based on Panoramic Image Generation and Deep Learning-Assisted Detection Method
    Yin, Tao
    Shen, Guodong
    Yin, Liang
    Shi, Guigang
    [J]. BUILDINGS, 2024, 14 (09)
  • [10] Precision cancer medicine based on 3D drug profiling of patient-derived cancer cell spheroid models
    Mikkonen, Piia
    Turunen, Laura
    Paasonen, Lauri
    Potdar, Swapnil
    Paavolainen, Lassi
    Murumagi, Astrid
    Kallioniemi, Olli
    Pietiainen, Vilja M.
    [J]. CANCER RESEARCH, 2018, 78 (13)