On the geometry of a Picard modular group

被引:0
|
作者
Deraux, Martin [1 ]
机构
[1] Univ Grenoble Alpes, Inst Fourier, 100 Rue Math, F-38610 Gieres, France
关键词
Arithmetic groups; locally symmetric spaces; complex hyperbolic geometry;
D O I
10.4171/GGD/734
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study geometric properties of the action on the complex hyperbolic plane H-C(2) of the Picard modular group Gamma = PU(2, 1, O-7), where O-7 denotes the ring of algebraic integers in Q(i root 7). We list conjugacy classes of maximal finite subgroups in Gamma and give an explicit description of the Fuchsian subgroups that occur as stabilizers of mirrors of complex reflections in Gamma. As an application, we describe an explicit torsion-free subgroup of index 336 in Gamma.
引用
收藏
页码:1393 / 1416
页数:24
相关论文
共 50 条
  • [1] The geometry of the Gauss–Picard modular group
    Elisha Falbel
    Gábor Francsics
    John R. Parker
    [J]. Mathematische Annalen, 2011, 349 : 459 - 508
  • [2] The geometry of the Eisenstein-Picard modular group
    Falbel, E
    Parker, JR
    [J]. DUKE MATHEMATICAL JOURNAL, 2006, 131 (02) : 249 - 289
  • [3] The geometry of the Gauss-Picard modular group
    Falbel, Elisha
    Francsics, Gabor
    Parker, John R.
    [J]. MATHEMATISCHE ANNALEN, 2011, 349 (02) : 459 - 508
  • [4] Analysis of a Picard modular group
    Francsics, Gabor
    Lax, Peter D.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (30) : 11103 - 11105
  • [5] THE PICARD GROUP OF SIEGEL MODULAR THREEFOLDS
    WEISSAUER, R
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1992, 430 : 179 - 211
  • [6] Elliptic points of the Picard modular group
    Yasaki, Dan
    [J]. MONATSHEFTE FUR MATHEMATIK, 2009, 156 (04): : 391 - 396
  • [7] Elliptic points of the Picard modular group
    Dan Yasaki
    [J]. Monatshefte für Mathematik, 2009, 156 : 391 - 396
  • [8] Suborbital Graphs of the Normalizer of Modular Group in the Picard Group
    Gozutok, Nazli Yazici
    Guler, Bahadir Ozgur
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A4): : 2167 - 2174
  • [9] Suborbital Graphs of the Normalizer of Modular Group in the Picard Group
    Nazlı Yazıcı Gözütok
    Bahadır Özgür Güler
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42 : 2167 - 2174
  • [10] PROPERTY (FA) OF THE GAUSS PICARD MODULAR GROUP
    Wang, Jieyan
    Xie, Baohua
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 84 (02) : 225 - 228