Study of Non-Linear Impulsive Neutral Fuzzy Delay Differential Equations with Non-Local Conditions

被引:2
|
作者
Gunasekar, Tharmalingam [1 ,2 ]
Thiravidarani, Jothivelu [1 ]
Mahdal, Miroslav [3 ]
Raghavendran, Prabakaran [1 ]
Venkatesan, Arikrishnan [1 ]
Elangovan, Muniyandy [4 ,5 ]
机构
[1] Vel Tech Rangarajan Dr Sagunthala R&D Inst Sci & T, Dept Math, Chennai 600062, India
[2] Indian Inst Technol IIT, Sch Artificial Intelligence & Data Sci, Jodhpur 342030, India
[3] VSB Tech Univ Ostrava, Fac Mech Engn, Dept Control Syst & Instrumentat, 17 Listopadu 2172-15, Ostrava 70800, Czech Republic
[4] Saveetha Sch Engn, Dept Biosci, Saveetha Nagar, Thandalam 602105, India
[5] Bond Marine Consultancy, Dept R&D, London EC1V2NX, England
关键词
neutral functional differential equation; contraction mapping fixed point; fuzzy solution; non-local conditions; EXISTENCE; INCLUSIONS; SELECTION;
D O I
10.3390/math11173734
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This manuscript aims to investigate the existence and uniqueness of fuzzy mild solutions for non-local impulsive neutral functional differential equations of both first and second order, incorporating finite delay. Furthermore, the study explores the properties of fuzzy set-valued mappings of a real variable, where these mappings exhibit characteristics such as normality, convexity, upper semi-continuity, and compact support. The application of the Banach fixed-point theorem is employed to derive the results. The research extensively employs fundamental concepts from fuzzy set theory, functional analysis, and the Hausdorff metric. Additionally, an illustrative example is provided to exemplify the practical implementation of the proposed concept.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Approximate controllability of non-instantaneous impulsive semi-linear neutral differential equations with non-local conditions and unbounded delay
    Camacho, Oscar
    Lalvay-Segovia, S.
    Leiva, Hugo
    Riera-Segura, L.
    [J]. QUAESTIONES MATHEMATICAE, 2023, 46 (10) : 2053 - 2064
  • [2] Controllability of Second Order Semi linear Impulsive Delay Differential Equations with Non local Conditions
    Li, Meili
    Han, Maoan
    [J]. PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON APPLIED MATRIX THEORY, 2009, : 96 - 98
  • [3] Non-linear fractional integro-differential systems with non-local conditions
    Ahmed, Hamdy M.
    [J]. IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2016, 33 (02) : 389 - 399
  • [4] OPTIMAL CONTROL PROBLEM FOR THE IMPULSIVE DIFFERENTIAL EQUATIONS WITH NON-LOCAL BOUNDARY CONDITIONS
    Sharifov, Ya. A.
    [J]. VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2013, (04): : 34 - 45
  • [5] Unique solvability of a non-linear non-local boundary-value problem for systems of non-linear functional differential equations
    Dilna, N.
    Ronto, A.
    [J]. MATHEMATICA SLOVACA, 2010, 60 (03) : 327 - 338
  • [6] NON-LINEAR STOCHASTIC DIFFERENTIAL DELAY EQUATIONS
    ADOMIAN, G
    RACH, R
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1983, 91 (01) : 94 - 101
  • [7] Oscillation Theory for Non-Linear Neutral Delay Differential Equations of Third Order
    Moaaz, Osama
    Dassios, Ioannis
    Muhsin, Waad
    Muhib, Ali
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (14):
  • [8] A stable numerical approach for implicit non-linear neutral delay differential equations
    Vermiglio, R
    Torelli, L
    [J]. BIT, 2003, 43 (01): : 195 - 215
  • [9] A Stable Numerical Approach for Implicit Non-Linear Neutral Delay Differential Equations
    R. Vermiglio
    L. Torelli
    [J]. BIT Numerical Mathematics, 2003, 43 : 195 - 215
  • [10] NON-LOCAL PROBLEM WITH NON-LINEAR CONDITIONS FOR A HYPERBOLIC EQUATION
    Dmitriev, V. B.
    [J]. VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2009, (01): : 26 - 32