Investigation of Difference Schemes for Two-Dimensional Navier-Stokes Equations by Using Computer Algebra Algorithms

被引:1
|
作者
Blinkov, Yu. A. [1 ,2 ,3 ]
Rebrina, A. Yu. [4 ]
机构
[1] Chernyshevsky Saratov Natl Res State Univ, Ul Astrakhanskaya 83, Saratov 410012, Russia
[2] Peoples Friendship Univ Russia, Ul Miklukho Maklaya 6, Moscow 117198, Russia
[3] Joint Inst Nucl Res, Ul Zholio Kyuri 6, Dubna 141980, Moscow oblast, Russia
[4] Gagarin State Tech Univ Saratov, Ul Politekhnicheskaya 77, Saratov 410054, Russia
基金
俄罗斯科学基金会;
关键词
FLOW;
D O I
10.1134/S0361768823010024
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A class of consistent difference schemes for incompressible Navier-Stokes equations in physical variables and their differential approximations are considered using an algorithm for Grobner basis construction. Results of investigating the first differential approximations of these schemes, which are obtained by using the authors' programs implemented in the SymPy computer algebra system, are presented. For the difference schemes under consideration, the quadratic dependence of the error for large Reynolds numbers and the inversely proportional dependence for creeping currents are analyzed.
引用
收藏
页码:26 / 31
页数:6
相关论文
共 50 条
  • [1] Investigation of Difference Schemes for Two-Dimensional Navier–Stokes Equations by Using Computer Algebra Algorithms
    Yu. A. Blinkov
    A. Yu. Rebrina
    [J]. Programming and Computer Software, 2023, 49 : 26 - 31
  • [2] On the two-dimensional hydrostatic Navier-Stokes equations
    Bresch, D
    Kazhikhov, A
    Lemoine, J
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 36 (03) : 796 - 814
  • [3] Involution and Difference Schemes for the Navier-Stokes Equations
    Gerdt, Vladimir P.
    Blinkov, Yuri A.
    [J]. COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, PROCEEDINGS, 2009, 5743 : 94 - +
  • [4] FUZZY SOLUTIONS FOR TWO-DIMENSIONAL NAVIER-STOKES EQUATIONS
    Chen, Y. -Y.
    Hsiao, R. -J.
    Huang, M. -C.
    [J]. JOURNAL OF MECHANICS, 2018, 34 (01) : 1 - 10
  • [5] On the two-dimensional aperture problem for Navier-Stokes equations
    Nazarov, SA
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 323 (06): : 699 - 703
  • [6] A probabilistic approach to the two-dimensional Navier-Stokes equations
    Busnello, B
    [J]. ANNALS OF PROBABILITY, 1999, 27 (04): : 1750 - 1780
  • [7] On the two-dimensional compressible isentropic Navier-Stokes equations
    Giacomoni, C
    Orenga, P
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2002, 36 (06): : 1091 - 1109
  • [8] Turnpike Property for Two-Dimensional Navier-Stokes Equations
    Zamorano, Sebastian
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2018, 20 (03) : 869 - 888
  • [9] On the Numerical Controllability of the Two-Dimensional Heat, Stokes and Navier-Stokes Equations
    Fernandez-Cara, Enrique
    Munch, Arnaud
    Souza, Diego A.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2017, 70 (02) : 819 - 858
  • [10] Computer Simulation of Water Flow Animation Based on Two-Dimensional Navier-Stokes Equations
    Cao, Rushi
    Cao, Ruyun
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2021, 2021