Aubry-Andre-Harper model: multifractality analysis versus Landauer conductance for quasicrystal chains

被引:0
|
作者
Kaya, Tuncer [1 ]
机构
[1] Yildiz Tech Univ, Dept Phys, Davutpasa, TR-34220 Istanbul, Turkiye
关键词
Aubry-Andre (AA) model; Anderson localization; Fractal dimension; Landauer formula; RANDOM-MATRIX THEORY; FRACTAL CHARACTER; WAVE-FUNCTIONS; LOCALIZATION; ELECTRONS;
D O I
10.1007/s12648-023-02810-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present the result of the localization feature of the quasiperiodic Aubry-Andre model. Localization and delocalization of energy eigenstates of the system are investigated by taking into account well-known theoretical perspectives such as the fractal dimension and the Landauer formula. Energy spectra of the system are obtained in the form of a Hofstadter butterfly for different values of the incommensurate parameter of the Aubry-Andre model and different values of the quasiperiodic disordered potentials. The inverse participation ratio analysis and fractal analysis of conductance are used for describing the localization feature of energy eigenstates. The conductance of the eigenstates is also obtained by calculating the transmission eigenvalues in the Landauer picture.
引用
收藏
页码:489 / 496
页数:8
相关论文
共 50 条
  • [1] Aubry–André–Harper model: multifractality analysis versus Landauer conductance for quasicrystal chains
    Tuncer Kaya
    Indian Journal of Physics, 2024, 98 : 489 - 496
  • [2] Persistent homology analysis of a generalized Aubry-Andre-Harper model
    He, Yu
    Xia, Shiqi
    Angelakis, Dimitris G.
    Song, Daohong
    Chen, Zhigang
    Leykam, Daniel
    PHYSICAL REVIEW B, 2022, 106 (05)
  • [3] Fidelity and criticality in the nonrecipro cal Aubry-Andre-Harper model
    Zeng, Chen-chang
    Cai, Zhen
    Wang, Guang-heng
    Sun, Gaoyong
    EPL, 2025, 149 (03)
  • [4] Localization and adiabatic pumping in a generalized Aubry-Andre-Harper model
    Liu, Fangli
    Ghosh, Somnath
    Chong, Y. D.
    PHYSICAL REVIEW B, 2015, 91 (01)
  • [5] Damping transition in an open generalized Aubry-Andre-Harper model
    He, Peng
    Liu, Yu-Guo
    Wang, Jian-Te
    Zhu, Shi-Liang
    PHYSICAL REVIEW A, 2022, 105 (02)
  • [6] Effect of loss on the topological features of dimer chains described by the extended Aubry-Andre-Harper model
    Zhao, X. L.
    Shi, Z. C.
    Yu, C. S.
    Yi, X. X.
    PHYSICAL REVIEW A, 2017, 95 (04)
  • [7] Nonequilibrium steady state phases of the interacting Aubry-Andre-Harper model
    Yoo, Yongchan
    Lee, Junhyun
    Swingle, Brian
    PHYSICAL REVIEW B, 2020, 102 (19)
  • [8] Dynamical localization-delocalization crossover in the Aubry-Andre-Harper model
    Dai, C. M.
    Wang, W.
    Yi, X. X.
    PHYSICAL REVIEW A, 2018, 98 (01)
  • [9] Phase transitions in a non-Hermitian Aubry-Andre-Harper model
    Longhi, Stefano
    PHYSICAL REVIEW B, 2021, 103 (05)
  • [10] Quantitative analysis of interaction effects in generalized Aubry-Andre-Harper models
    Lin, Y-T
    Weber, C. S.
    Kennes, D. M.
    Pletyukhov, M.
    Schoeller, H.
    Meden, V
    PHYSICAL REVIEW B, 2021, 103 (19)