THE NON-TANGENTIAL BOUNDARY BEHAVIOR OF THE MATRIX-VALUED RATIONAL INNER FUNCTIONS ON BOUNDED SYMMETRIC DOMAIN

被引:0
|
作者
Wang, Kai [1 ]
Zhang, Shuyi [2 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Fudan Univ, High Sch, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
Rational inner function; bounded symmetric domain; non-tangential limit; QUOTIENT MODULES; THEOREM; INTEGRABILITY; SINGULARITIES; REGULARITY;
D O I
10.1090/proc/16154
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Knese [Proc. LMS 111(2015), pp. 1261-1306] proved every rational inner function on polydisc has a non-tangential limit at every point of the Shilov boundary. We extended his result to the case of functions on general bounded symmetric domains. Namely, every rational inner function on a bounded symmetric domain has a non-tangential limit of modulus 1 at every point of the Shilov boundary. We also prove that every matrix-valued rational inner function on tube-type domain has a unitary non-tangential limit at every point of the Shilov boundary.
引用
收藏
页码:1539 / 1551
页数:13
相关论文
共 43 条
  • [1] NORMAL FUNCTIONS AND NON-TANGENTIAL BOUNDARY ARCS
    LAPPAN, P
    RUNG, DC
    CANADIAN JOURNAL OF MATHEMATICS, 1966, 18 (02): : 256 - &
  • [2] On a moment problem for rational matrix-valued functions
    Fritzsche, B
    Kirstein, B
    Lasarow, A
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 372 : 1 - 31
  • [3] RATIONAL INNER FUNCTIONS ON BOUNDED SYMMETRIC DOMAINS
    KORANYI, A
    VAGI, S
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 254 (OCT) : 179 - 193
  • [4] Orthogonal rational matrix-valued functions on the unit circle
    Fritzsche, B
    Kirstein, B
    Lasarow, A
    MATHEMATISCHE NACHRICHTEN, 2005, 278 (05) : 525 - 553
  • [5] ALGORITHMS FOR THE RATIONAL APPROXIMATION OF MATRIX-VALUED FUNCTIONS\ast
    Gosea, Ion Victor
    Guttel, Stefan
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (05): : A3033 - A3054
  • [6] A block completion problem for matrix-valued inner functions
    Fritzsche, B
    Kirstein, B
    Muller, K
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 77 (1-2) : 157 - 172
  • [7] THE DEGREE AND THE COPRIME-NESS FOR MATRIX-VALUED RATIONAL FUNCTIONS
    Kim, An-Hyun
    Kim, In Hyoun
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (01): : 197 - 205
  • [9] On Hilbert modules of rational matrix-valued functions and related inverse problems
    Fritzsche, B
    Kirstein, B
    Lasarow, A
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 179 (1-2) : 215 - 248
  • [10] PARA-ORTHOGONAL RATIONAL MATRIX-VALUED FUNCTIONS ON THE UNIT CIRCLE
    Fritzsche, Bernd
    Kirstein, Bernd
    Lasarow, Andreas
    OPERATORS AND MATRICES, 2012, 6 (04): : 631 - 679