Valid inequalities for the k-Color Shortest Path Problem

被引:0
|
作者
de Andrade, Rafael Castro [1 ]
Castelo, Emanuel Elias Silva [2 ]
Saraiva, Rommel Dias [3 ]
机构
[1] Univ Fed Ceara, Dept Estat & Matemat Aplicada, Campus Pici,bloco 910, Fortaleza BR-60440900, CE, Brazil
[2] Univ Fed Ceara, Mestrado & Doutorado Ciencia Computacao, Campus Pici,bloco 910, Fortaleza, CE, Brazil
[3] Univ Fortaleza, Lab Ciencia Dados & Inteligencia Artificial, Ave Washington Soares 1321,Sl M04, BR-60811905 Fortaleza, Brazil
关键词
Combinatorial optimization; k-color shortest path problem; Valid inequalities;
D O I
10.1016/j.ejor.2023.12.014
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Given a digraph D = (V, A) where each arc (i, j) is an element of A has a cost dij is an element of R+ and a color c(i, j), a positive integer k, and vertices s, t is an element of V, the k -Color Shortest Path Problem consists in finding a path from s to t of minimum cost while using at most k distinct arc colors. We propose valid inequalities for the problem that proved to strengthen the linear relaxation of an existing Integer Linear Programming formulation for the problem. One exponential set of valid inequalities defines a new formulation for the problem that is solved by using a branch -and -cut algorithm. We introduce more challenging instances for the problem and present numerical experiments for both the benchmark and the new instances. Finally, we evaluate the individual and the collective use of the valid inequalities. Computational results for the proposed ideas and for existing solution approaches for the problem showed the effectiveness of the new inequalities in handling the new instances, both in terms of execution times and improvement of the linear relaxed solutions.
引用
收藏
页码:499 / 510
页数:12
相关论文
共 50 条
  • [1] The Ripple-Spreading Algorithm for the k-Color Shortest Path Problem
    Ma, Yi-Ming
    Zhou, Hang
    Hu, Xiao-Bing
    [J]. 2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 1714 - 1719
  • [2] A dynamic programming algorithm for solving the k-Color Shortest Path Problem
    Ferone, Daniele
    Festa, Paola
    Fugaro, Serena
    Pastore, Tommaso
    [J]. OPTIMIZATION LETTERS, 2021, 15 (06) : 1973 - 1992
  • [3] A dynamic programming algorithm for solving the k-Color Shortest Path Problem
    Daniele Ferone
    Paola Festa
    Serena Fugaro
    Tommaso Pastore
    [J]. Optimization Letters, 2021, 15 : 1973 - 1992
  • [4] Valid inequalities and lifting procedures for the shortest path problem in digraphs with negative cycles
    M. S. Ibrahim
    N. Maculan
    M. Minoux
    [J]. Optimization Letters, 2015, 9 : 345 - 357
  • [5] Valid inequalities and lifting procedures for the shortest path problem in digraphs with negative cycles
    Ibrahim, M. S.
    Maculan, N.
    Minoux, M.
    [J]. OPTIMIZATION LETTERS, 2015, 9 (02) : 345 - 357
  • [6] Constrained shortest path tour problem: models, valid inequalities, and Lagrangian heuristics
    Saraiva, Rommel Dias
    de Andrade, Rafael Castro
    [J]. INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2021, 28 (01) : 222 - 261
  • [7] Valid inequalities in shortest-path routing optimization
    Tomaszewski, A.
    Pioro, M.
    Dzida, M.
    Mycek, M.
    Zagozdzon, M.
    [J]. ICTON 2007: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS, VOL 1, 2007, : 59 - +
  • [8] On the K shortest path trees problem
    Sedeno-Noda, Antonio
    Gonzalez-Martin, Carlos
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 202 (03) : 628 - 635
  • [9] K Constrained Shortest Path Problem
    Shi, Ning
    [J]. IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2010, 7 (01) : 15 - 23
  • [10] K-COLOR SPERNER THEOREMS
    GRIGGS, JR
    ODLYZKO, AM
    SHEARER, JB
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 42 (01) : 31 - 54